Cargando…
Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment
BACKGROUND: Protein model quality assessment is an essential component of generating and using protein structural models. During the Tenth Critical Assessment of Techniques for Protein Structure Prediction (CASP10), we developed and tested four automated methods (MULTICOM-REFINE, MULTICOM-CLUSTER, M...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996498/ https://www.ncbi.nlm.nih.gov/pubmed/24731387 http://dx.doi.org/10.1186/1472-6807-14-13 |
_version_ | 1782313055892275200 |
---|---|
author | Cao, Renzhi Wang, Zheng Cheng, Jianlin |
author_facet | Cao, Renzhi Wang, Zheng Cheng, Jianlin |
author_sort | Cao, Renzhi |
collection | PubMed |
description | BACKGROUND: Protein model quality assessment is an essential component of generating and using protein structural models. During the Tenth Critical Assessment of Techniques for Protein Structure Prediction (CASP10), we developed and tested four automated methods (MULTICOM-REFINE, MULTICOM-CLUSTER, MULTICOM-NOVEL, and MULTICOM-CONSTRUCT) that predicted both local and global quality of protein structural models. RESULTS: MULTICOM-REFINE was a clustering approach that used the average pairwise structural similarity between models to measure the global quality and the average Euclidean distance between a model and several top ranked models to measure the local quality. MULTICOM-CLUSTER and MULTICOM-NOVEL were two new support vector machine-based methods of predicting both the local and global quality of a single protein model. MULTICOM-CONSTRUCT was a new weighted pairwise model comparison (clustering) method that used the weighted average similarity between models in a pool to measure the global model quality. Our experiments showed that the pairwise model assessment methods worked better when a large portion of models in the pool were of good quality, whereas single-model quality assessment methods performed better on some hard targets when only a small portion of models in the pool were of reasonable quality. CONCLUSIONS: Since digging out a few good models from a large pool of low-quality models is a major challenge in protein structure prediction, single model quality assessment methods appear to be poised to make important contributions to protein structure modeling. The other interesting finding was that single-model quality assessment scores could be used to weight the models by the consensus pairwise model comparison method to improve its accuracy. |
format | Online Article Text |
id | pubmed-3996498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39964982014-05-07 Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment Cao, Renzhi Wang, Zheng Cheng, Jianlin BMC Struct Biol Research Article BACKGROUND: Protein model quality assessment is an essential component of generating and using protein structural models. During the Tenth Critical Assessment of Techniques for Protein Structure Prediction (CASP10), we developed and tested four automated methods (MULTICOM-REFINE, MULTICOM-CLUSTER, MULTICOM-NOVEL, and MULTICOM-CONSTRUCT) that predicted both local and global quality of protein structural models. RESULTS: MULTICOM-REFINE was a clustering approach that used the average pairwise structural similarity between models to measure the global quality and the average Euclidean distance between a model and several top ranked models to measure the local quality. MULTICOM-CLUSTER and MULTICOM-NOVEL were two new support vector machine-based methods of predicting both the local and global quality of a single protein model. MULTICOM-CONSTRUCT was a new weighted pairwise model comparison (clustering) method that used the weighted average similarity between models in a pool to measure the global model quality. Our experiments showed that the pairwise model assessment methods worked better when a large portion of models in the pool were of good quality, whereas single-model quality assessment methods performed better on some hard targets when only a small portion of models in the pool were of reasonable quality. CONCLUSIONS: Since digging out a few good models from a large pool of low-quality models is a major challenge in protein structure prediction, single model quality assessment methods appear to be poised to make important contributions to protein structure modeling. The other interesting finding was that single-model quality assessment scores could be used to weight the models by the consensus pairwise model comparison method to improve its accuracy. BioMed Central 2014-04-15 /pmc/articles/PMC3996498/ /pubmed/24731387 http://dx.doi.org/10.1186/1472-6807-14-13 Text en Copyright © 2014 Cao et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Cao, Renzhi Wang, Zheng Cheng, Jianlin Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment |
title | Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment |
title_full | Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment |
title_fullStr | Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment |
title_full_unstemmed | Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment |
title_short | Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment |
title_sort | designing and evaluating the multicom protein local and global model quality prediction methods in the casp10 experiment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996498/ https://www.ncbi.nlm.nih.gov/pubmed/24731387 http://dx.doi.org/10.1186/1472-6807-14-13 |
work_keys_str_mv | AT caorenzhi designingandevaluatingthemulticomproteinlocalandglobalmodelqualitypredictionmethodsinthecasp10experiment AT wangzheng designingandevaluatingthemulticomproteinlocalandglobalmodelqualitypredictionmethodsinthecasp10experiment AT chengjianlin designingandevaluatingthemulticomproteinlocalandglobalmodelqualitypredictionmethodsinthecasp10experiment |