Cargando…
Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation
The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku′′ + M(|A (1/2) u|(2))Au + g(u′) = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the e...
Autores principales: | Kim, Daewook, Kim, Dojin, Hong, Keum-Shik, Jung, Il Hyo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996994/ https://www.ncbi.nlm.nih.gov/pubmed/24977217 http://dx.doi.org/10.1155/2014/716740 |
Ejemplares similares
-
Existence of Multiple Solutions for a p-Kirchhoff Problem with Nonlinear Boundary Conditions
por: Xiu, Zonghu, et al.
Publicado: (2013) -
Asymptotics for dissipative nonlinear equations
por: Hayashi, Nakao, et al.
Publicado: (2006) -
Multiplicity and asymptotic behavior of solutions for Kirchhoff type equations involving the Hardy–Sobolev exponent and singular nonlinearity
por: Shen, Liejun
Publicado: (2018) -
Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent
por: Rao, B, et al.
Publicado: (2004) -
Global existence and uniqueness of nonlinear evolutionary fluid equations
por: Qin, Yuming, et al.
Publicado: (2015)