Cargando…

Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium

BACKGROUND: Cane molasses, an important residue of the sugar industry, have the potential as a cost-effective carbon source that could serve as nutrients for industrial enzyme-producing microorganisms, especially filamentous fungi. However, the enzyme mixtures produced in such a complex medium are p...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Jun, Wu, Ai-min, Chen, Daiwen, Yu, Bing, Mao, Xiangbing, Zheng, Ping, Yu, Jie, Tian, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997213/
https://www.ncbi.nlm.nih.gov/pubmed/24655817
http://dx.doi.org/10.1186/1754-6834-7-43
Descripción
Sumario:BACKGROUND: Cane molasses, an important residue of the sugar industry, have the potential as a cost-effective carbon source that could serve as nutrients for industrial enzyme-producing microorganisms, especially filamentous fungi. However, the enzyme mixtures produced in such a complex medium are poorly characterized. In this study, the secretome of Trichoderma reesei grown on a cane molasses medium (CMM) as well as on a lactose-based conventional medium (LCM) were compared and analyzed by using proteomics. RESULTS: In this study we show that both the CMM and LCM can serve as excellent growth media for T. reesei. The enzyme expression patterns in the two media were similar and a considerable number of the identified proteins on two-dimensional gel electrophoresis (2-DE) gels were those involved in biomass degradation. The most abundant cellulolytic enzymes identified in both media were cellobiohydrolases (Cel7A/Cel6A) and endoglucanases (Cel7A/Cel5A) and were found to be more abundant in CMM. We also found that both media can serve as an inducer of xylanolytic enzymes. The main xylanases (XYNI/XYNIV) and xyloglucanase (Cel74A) were found at higher concentrations in the CMM than LCM. CONCLUSIONS: We analyzed the prevalent proteins secreted by T. reesei in the CMM and LCM. Here, we show that hydrolytic enzymes are cost-effective and can be produced on cane molasses as a carbon source which can be used to digest lignocellulolytic biomass.