Cargando…

Traveling surface waves of moderate amplitude in shallow water

We study traveling wave solutions of an equation for surface waves of moderate amplitude arising as a shallow water approximation of the Euler equations for inviscid, incompressible and homogeneous fluids. We obtain solitary waves of elevation and depression, including a family of solitary waves wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Gasull, Armengol, Geyer, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pergamon Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997238/
https://www.ncbi.nlm.nih.gov/pubmed/24895474
http://dx.doi.org/10.1016/j.na.2014.02.005
Descripción
Sumario:We study traveling wave solutions of an equation for surface waves of moderate amplitude arising as a shallow water approximation of the Euler equations for inviscid, incompressible and homogeneous fluids. We obtain solitary waves of elevation and depression, including a family of solitary waves with compact support, where the amplitude may increase or decrease with respect to the wave speed. Our approach is based on techniques from dynamical systems and relies on a reformulation of the evolution equation as an autonomous Hamiltonian system which facilitates an explicit expression for bounded orbits in the phase plane to establish existence of the corresponding periodic and solitary traveling wave solutions.