Cargando…

Optimisation and Assessment of Three Modern Touch Screen Tablet Computers for Clinical Vision Testing

Technological advances have led to the development of powerful yet portable tablet computers whose touch-screen resolutions now permit the presentation of targets small enough to test the limits of normal visual acuity. Such devices have become ubiquitous in daily life and are moving into the clinic...

Descripción completa

Detalles Bibliográficos
Autores principales: Tahir, Humza J., Murray, Ian J., Parry, Neil R. A., Aslam, Tariq M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997358/
https://www.ncbi.nlm.nih.gov/pubmed/24759774
http://dx.doi.org/10.1371/journal.pone.0095074
Descripción
Sumario:Technological advances have led to the development of powerful yet portable tablet computers whose touch-screen resolutions now permit the presentation of targets small enough to test the limits of normal visual acuity. Such devices have become ubiquitous in daily life and are moving into the clinical space. However, in order to produce clinically valid tests, it is important to identify the limits imposed by the screen characteristics, such as resolution, brightness uniformity, contrast linearity and the effect of viewing angle. Previously we have conducted such tests on the iPad 3. Here we extend our investigations to 2 other devices and outline a protocol for calibrating such screens, using standardised methods to measure the gamma function, warm up time, screen uniformity and the effects of viewing angle and screen reflections. We demonstrate that all three devices manifest typical gamma functions for voltage and luminance with warm up times of approximately 15 minutes. However, there were differences in homogeneity and reflectance among the displays. We suggest practical means to optimise quality of display for vision testing including screen calibration.