Cargando…
Feature combination networks for the interpretation of statistical machine learning models: application to Ames mutagenicity
BACKGROUND: A new algorithm has been developed to enable the interpretation of black box models. The developed algorithm is agnostic to learning algorithm and open to all structural based descriptors such as fragments, keys and hashed fingerprints. The algorithm has provided meaningful interpretatio...
Autores principales: | Webb, Samuel J, Hanser, Thierry, Howlin, Brendan, Krause, Paul, Vessey, Jonathan D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997921/ https://www.ncbi.nlm.nih.gov/pubmed/24661325 http://dx.doi.org/10.1186/1758-2946-6-8 |
Ejemplares similares
-
Improvement of quantitative structure–activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project
por: Honma, Masamitsu, et al.
Publicado: (2019) -
Nonparametric regression analysis of data from the Ames mutagenicity assay.
por: Cologne, J B, et al.
Publicado: (1994) -
Mutagenicity of Flavonoids Assayed by Bacterial Reverse Mutation (Ames) Test
por: Resende, Flavia Aparecida, et al.
Publicado: (2012) -
An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential
por: McCarren, Patrick, et al.
Publicado: (2011) -
Mutagenicity and antimutagenicity of six Brazilian Byrsonima species assessed by the Ames test
por: Espanha, Lívia Greghi, et al.
Publicado: (2014)