Cargando…
How to get the most from microarray data: advice from reverse genomics
BACKGROUND: Whole-genome profiling of gene expression is a powerful tool for identifying cancer-associated genes. Genes differentially expressed between normal and tumorous tissues are usually considered to be cancer associated. We recently demonstrated that the analysis of interindividual variation...
Autores principales: | Gorlov, Ivan P, Yang, Ji-Yeon, Byun, Jinyoung, Logothetis, Christopher, Gorlova, Olga Y, Do, Kim-Anh, Amos, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997969/ https://www.ncbi.nlm.nih.gov/pubmed/24656147 http://dx.doi.org/10.1186/1471-2164-15-223 |
Ejemplares similares
-
GWAS Meets Microarray: Are the Results of Genome-Wide Association Studies and Gene-Expression Profiling Consistent? Prostate Cancer as an Example
por: Gorlov, Ivan P., et al.
Publicado: (2009) -
Genes with a large intronic burden show greater evolutionary conservation on the protein level
por: Gorlova, Olga, et al.
Publicado: (2014) -
Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data
por: Gorlov, Ivan P, et al.
Publicado: (2009) -
Building a Statistical Model for Predicting Cancer Genes
por: Gorlov, Ivan P., et al.
Publicado: (2012) -
Prediction of the gene expression in normal lung tissue by the gene expression in blood
por: Halloran, Justin W., et al.
Publicado: (2015)