Cargando…
Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns
The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from...
Autores principales: | Bildirici, Melike, Ersin, Özgür |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997987/ https://www.ncbi.nlm.nih.gov/pubmed/24977200 http://dx.doi.org/10.1155/2014/497941 |
Ejemplares similares
-
Bootstrapping Stationary ARMA-GARCH Models
por: Shimizu, Kenichi
Publicado: (2010) -
GARCHNet: Value-at-Risk Forecasting with GARCH Models Based on Neural Networks
por: Buczynski, Mateusz, et al.
Publicado: (2023) -
Linear models and time-series analysis: regression, anova, arma and garch
por: Paolella, Marc S
Publicado: (2018) -
Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain
por: Dai, Yonghui, et al.
Publicado: (2014) -
Using E-GARCH to Analyze the Impact of Investor Sentiment on Stock Returns Near Stock Market Crashes
por: Chen, Sze Ting, et al.
Publicado: (2021)