Cargando…
BgCut: Automatic Ship Detection from UAV Images
Ship detection in static UAV aerial images is a fundamental challenge in sea target detection and precise positioning. In this paper, an improved universal background model based on Grabcut algorithm is proposed to segment foreground objects from sea automatically. First, a sea template library incl...
Autores principales: | Xu, Chao, Zhang, Dongping, Zhang, Zhengning, Feng, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998001/ https://www.ncbi.nlm.nih.gov/pubmed/24977182 http://dx.doi.org/10.1155/2014/171978 |
Ejemplares similares
-
Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images
por: Ortega-Terol, Damian, et al.
Publicado: (2017) -
A Robust Method for Automatic Panoramic UAV Image Mosaic
por: Chen, Jun, et al.
Publicado: (2019) -
Deep Learning-Based Automatic Detection of Ships: An Experimental Study Using Satellite Images
por: Patel, Krishna, et al.
Publicado: (2022) -
Fast Automatic Registration of UAV Images via Bidirectional Matching
por: Luo, Xin, et al.
Publicado: (2023) -
UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images
por: Yan, Haohui, et al.
Publicado: (2023)