Cargando…
Monotone Data Visualization Using Rational Trigonometric Spline Interpolation
Rational cubic and bicubic trigonometric schemes are developed to conserve monotonicity of curve and surface data, respectively. The rational cubic function has four parameters in each subinterval, while the rational bicubic partially blended function has eight parameters in each rectangular patch....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998008/ https://www.ncbi.nlm.nih.gov/pubmed/24955413 http://dx.doi.org/10.1155/2014/602453 |
_version_ | 1782313279774785536 |
---|---|
author | Ibraheem, Farheen Hussain, Maria Hussain, Malik Zawwar |
author_facet | Ibraheem, Farheen Hussain, Maria Hussain, Malik Zawwar |
author_sort | Ibraheem, Farheen |
collection | PubMed |
description | Rational cubic and bicubic trigonometric schemes are developed to conserve monotonicity of curve and surface data, respectively. The rational cubic function has four parameters in each subinterval, while the rational bicubic partially blended function has eight parameters in each rectangular patch. The monotonicity of curve and surface data is retained by developing constraints on some of these parameters in description of rational cubic and bicubic trigonometric functions. The remaining parameters are kept free to modify the shape of curve and surface if required. The developed algorithm is verified mathematically and demonstrated graphically. |
format | Online Article Text |
id | pubmed-3998008 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39980082014-06-22 Monotone Data Visualization Using Rational Trigonometric Spline Interpolation Ibraheem, Farheen Hussain, Maria Hussain, Malik Zawwar ScientificWorldJournal Research Article Rational cubic and bicubic trigonometric schemes are developed to conserve monotonicity of curve and surface data, respectively. The rational cubic function has four parameters in each subinterval, while the rational bicubic partially blended function has eight parameters in each rectangular patch. The monotonicity of curve and surface data is retained by developing constraints on some of these parameters in description of rational cubic and bicubic trigonometric functions. The remaining parameters are kept free to modify the shape of curve and surface if required. The developed algorithm is verified mathematically and demonstrated graphically. Hindawi Publishing Corporation 2014 2014-04-03 /pmc/articles/PMC3998008/ /pubmed/24955413 http://dx.doi.org/10.1155/2014/602453 Text en Copyright © 2014 Farheen Ibraheem et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ibraheem, Farheen Hussain, Maria Hussain, Malik Zawwar Monotone Data Visualization Using Rational Trigonometric Spline Interpolation |
title | Monotone Data Visualization Using Rational Trigonometric Spline Interpolation |
title_full | Monotone Data Visualization Using Rational Trigonometric Spline Interpolation |
title_fullStr | Monotone Data Visualization Using Rational Trigonometric Spline Interpolation |
title_full_unstemmed | Monotone Data Visualization Using Rational Trigonometric Spline Interpolation |
title_short | Monotone Data Visualization Using Rational Trigonometric Spline Interpolation |
title_sort | monotone data visualization using rational trigonometric spline interpolation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998008/ https://www.ncbi.nlm.nih.gov/pubmed/24955413 http://dx.doi.org/10.1155/2014/602453 |
work_keys_str_mv | AT ibraheemfarheen monotonedatavisualizationusingrationaltrigonometricsplineinterpolation AT hussainmaria monotonedatavisualizationusingrationaltrigonometricsplineinterpolation AT hussainmalikzawwar monotonedatavisualizationusingrationaltrigonometricsplineinterpolation |