Cargando…

Monotone Data Visualization Using Rational Trigonometric Spline Interpolation

Rational cubic and bicubic trigonometric schemes are developed to conserve monotonicity of curve and surface data, respectively. The rational cubic function has four parameters in each subinterval, while the rational bicubic partially blended function has eight parameters in each rectangular patch....

Descripción completa

Detalles Bibliográficos
Autores principales: Ibraheem, Farheen, Hussain, Maria, Hussain, Malik Zawwar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998008/
https://www.ncbi.nlm.nih.gov/pubmed/24955413
http://dx.doi.org/10.1155/2014/602453
_version_ 1782313279774785536
author Ibraheem, Farheen
Hussain, Maria
Hussain, Malik Zawwar
author_facet Ibraheem, Farheen
Hussain, Maria
Hussain, Malik Zawwar
author_sort Ibraheem, Farheen
collection PubMed
description Rational cubic and bicubic trigonometric schemes are developed to conserve monotonicity of curve and surface data, respectively. The rational cubic function has four parameters in each subinterval, while the rational bicubic partially blended function has eight parameters in each rectangular patch. The monotonicity of curve and surface data is retained by developing constraints on some of these parameters in description of rational cubic and bicubic trigonometric functions. The remaining parameters are kept free to modify the shape of curve and surface if required. The developed algorithm is verified mathematically and demonstrated graphically.
format Online
Article
Text
id pubmed-3998008
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-39980082014-06-22 Monotone Data Visualization Using Rational Trigonometric Spline Interpolation Ibraheem, Farheen Hussain, Maria Hussain, Malik Zawwar ScientificWorldJournal Research Article Rational cubic and bicubic trigonometric schemes are developed to conserve monotonicity of curve and surface data, respectively. The rational cubic function has four parameters in each subinterval, while the rational bicubic partially blended function has eight parameters in each rectangular patch. The monotonicity of curve and surface data is retained by developing constraints on some of these parameters in description of rational cubic and bicubic trigonometric functions. The remaining parameters are kept free to modify the shape of curve and surface if required. The developed algorithm is verified mathematically and demonstrated graphically. Hindawi Publishing Corporation 2014 2014-04-03 /pmc/articles/PMC3998008/ /pubmed/24955413 http://dx.doi.org/10.1155/2014/602453 Text en Copyright © 2014 Farheen Ibraheem et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ibraheem, Farheen
Hussain, Maria
Hussain, Malik Zawwar
Monotone Data Visualization Using Rational Trigonometric Spline Interpolation
title Monotone Data Visualization Using Rational Trigonometric Spline Interpolation
title_full Monotone Data Visualization Using Rational Trigonometric Spline Interpolation
title_fullStr Monotone Data Visualization Using Rational Trigonometric Spline Interpolation
title_full_unstemmed Monotone Data Visualization Using Rational Trigonometric Spline Interpolation
title_short Monotone Data Visualization Using Rational Trigonometric Spline Interpolation
title_sort monotone data visualization using rational trigonometric spline interpolation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998008/
https://www.ncbi.nlm.nih.gov/pubmed/24955413
http://dx.doi.org/10.1155/2014/602453
work_keys_str_mv AT ibraheemfarheen monotonedatavisualizationusingrationaltrigonometricsplineinterpolation
AT hussainmaria monotonedatavisualizationusingrationaltrigonometricsplineinterpolation
AT hussainmalikzawwar monotonedatavisualizationusingrationaltrigonometricsplineinterpolation