Cargando…
Regularized EM algorithm for sparse parameter estimation in nonlinear dynamic systems with application to gene regulatory network inference
Parameter estimation in dynamic systems finds applications in various disciplines, including system biology. The well-known expectation-maximization (EM) algorithm is a popular method and has been widely used to solve system identification and parameter estimation problems. However, the conventional...
Autores principales: | Jia, Bin, Wang, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998071/ https://www.ncbi.nlm.nih.gov/pubmed/24708632 http://dx.doi.org/10.1186/1687-4153-2014-5 |
Ejemplares similares
-
Inference of regulatory networks through temporally sparse data
por: Alali, Mohammad, et al.
Publicado: (2022) -
OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks
por: Lim, Néhémy, et al.
Publicado: (2013) -
Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations
por: Cai, Xiaodong, et al.
Publicado: (2013) -
Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions
por: Aghazadeh, Amirali, et al.
Publicado: (2021) -
Gene regulatory network inference from sparsely sampled noisy data
por: Aalto, Atte, et al.
Publicado: (2020)