Cargando…

Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata

Motivation: Experimental spatial proteomics, i.e. the high-throughput assignment of proteins to sub-cellular compartments based on quantitative proteomics data, promises to shed new light on many biological processes given adequate computational tools. Results: Here we present pRoloc, a complete inf...

Descripción completa

Detalles Bibliográficos
Autores principales: Gatto, Laurent, Breckels, Lisa M., Wieczorek, Samuel, Burger, Thomas, Lilley, Kathryn S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998135/
https://www.ncbi.nlm.nih.gov/pubmed/24413670
http://dx.doi.org/10.1093/bioinformatics/btu013
_version_ 1782313300527153152
author Gatto, Laurent
Breckels, Lisa M.
Wieczorek, Samuel
Burger, Thomas
Lilley, Kathryn S.
author_facet Gatto, Laurent
Breckels, Lisa M.
Wieczorek, Samuel
Burger, Thomas
Lilley, Kathryn S.
author_sort Gatto, Laurent
collection PubMed
description Motivation: Experimental spatial proteomics, i.e. the high-throughput assignment of proteins to sub-cellular compartments based on quantitative proteomics data, promises to shed new light on many biological processes given adequate computational tools. Results: Here we present pRoloc, a complete infrastructure to support and guide the sound analysis of quantitative mass-spectrometry-based spatial proteomics data. It provides functionality for unsupervised and supervised machine learning for data exploration and protein classification and novelty detection to identify new putative sub-cellular clusters. The software builds upon existing infrastructure for data management and data processing. Availability: pRoloc is implemented in the R language and available under an open-source license from the Bioconductor project (http://www.bioconductor.org/). A vignette with a complete tutorial describing data import/export and analysis is included in the package. Test data is available in the companion package pRolocdata. Contact: lg390@cam.ac.uk
format Online
Article
Text
id pubmed-3998135
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-39981352014-04-24 Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata Gatto, Laurent Breckels, Lisa M. Wieczorek, Samuel Burger, Thomas Lilley, Kathryn S. Bioinformatics Applications Notes Motivation: Experimental spatial proteomics, i.e. the high-throughput assignment of proteins to sub-cellular compartments based on quantitative proteomics data, promises to shed new light on many biological processes given adequate computational tools. Results: Here we present pRoloc, a complete infrastructure to support and guide the sound analysis of quantitative mass-spectrometry-based spatial proteomics data. It provides functionality for unsupervised and supervised machine learning for data exploration and protein classification and novelty detection to identify new putative sub-cellular clusters. The software builds upon existing infrastructure for data management and data processing. Availability: pRoloc is implemented in the R language and available under an open-source license from the Bioconductor project (http://www.bioconductor.org/). A vignette with a complete tutorial describing data import/export and analysis is included in the package. Test data is available in the companion package pRolocdata. Contact: lg390@cam.ac.uk Oxford University Press 2014-05-01 2014-01-11 /pmc/articles/PMC3998135/ /pubmed/24413670 http://dx.doi.org/10.1093/bioinformatics/btu013 Text en © The Author 2014. Published by Oxford University Press. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Notes
Gatto, Laurent
Breckels, Lisa M.
Wieczorek, Samuel
Burger, Thomas
Lilley, Kathryn S.
Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata
title Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata
title_full Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata
title_fullStr Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata
title_full_unstemmed Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata
title_short Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata
title_sort mass-spectrometry-based spatial proteomics data analysis using proloc and prolocdata
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998135/
https://www.ncbi.nlm.nih.gov/pubmed/24413670
http://dx.doi.org/10.1093/bioinformatics/btu013
work_keys_str_mv AT gattolaurent massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata
AT breckelslisam massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata
AT wieczoreksamuel massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata
AT burgerthomas massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata
AT lilleykathryns massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata