Cargando…
Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata
Motivation: Experimental spatial proteomics, i.e. the high-throughput assignment of proteins to sub-cellular compartments based on quantitative proteomics data, promises to shed new light on many biological processes given adequate computational tools. Results: Here we present pRoloc, a complete inf...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998135/ https://www.ncbi.nlm.nih.gov/pubmed/24413670 http://dx.doi.org/10.1093/bioinformatics/btu013 |
_version_ | 1782313300527153152 |
---|---|
author | Gatto, Laurent Breckels, Lisa M. Wieczorek, Samuel Burger, Thomas Lilley, Kathryn S. |
author_facet | Gatto, Laurent Breckels, Lisa M. Wieczorek, Samuel Burger, Thomas Lilley, Kathryn S. |
author_sort | Gatto, Laurent |
collection | PubMed |
description | Motivation: Experimental spatial proteomics, i.e. the high-throughput assignment of proteins to sub-cellular compartments based on quantitative proteomics data, promises to shed new light on many biological processes given adequate computational tools. Results: Here we present pRoloc, a complete infrastructure to support and guide the sound analysis of quantitative mass-spectrometry-based spatial proteomics data. It provides functionality for unsupervised and supervised machine learning for data exploration and protein classification and novelty detection to identify new putative sub-cellular clusters. The software builds upon existing infrastructure for data management and data processing. Availability: pRoloc is implemented in the R language and available under an open-source license from the Bioconductor project (http://www.bioconductor.org/). A vignette with a complete tutorial describing data import/export and analysis is included in the package. Test data is available in the companion package pRolocdata. Contact: lg390@cam.ac.uk |
format | Online Article Text |
id | pubmed-3998135 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-39981352014-04-24 Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata Gatto, Laurent Breckels, Lisa M. Wieczorek, Samuel Burger, Thomas Lilley, Kathryn S. Bioinformatics Applications Notes Motivation: Experimental spatial proteomics, i.e. the high-throughput assignment of proteins to sub-cellular compartments based on quantitative proteomics data, promises to shed new light on many biological processes given adequate computational tools. Results: Here we present pRoloc, a complete infrastructure to support and guide the sound analysis of quantitative mass-spectrometry-based spatial proteomics data. It provides functionality for unsupervised and supervised machine learning for data exploration and protein classification and novelty detection to identify new putative sub-cellular clusters. The software builds upon existing infrastructure for data management and data processing. Availability: pRoloc is implemented in the R language and available under an open-source license from the Bioconductor project (http://www.bioconductor.org/). A vignette with a complete tutorial describing data import/export and analysis is included in the package. Test data is available in the companion package pRolocdata. Contact: lg390@cam.ac.uk Oxford University Press 2014-05-01 2014-01-11 /pmc/articles/PMC3998135/ /pubmed/24413670 http://dx.doi.org/10.1093/bioinformatics/btu013 Text en © The Author 2014. Published by Oxford University Press. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Applications Notes Gatto, Laurent Breckels, Lisa M. Wieczorek, Samuel Burger, Thomas Lilley, Kathryn S. Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata |
title | Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata |
title_full | Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata |
title_fullStr | Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata |
title_full_unstemmed | Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata |
title_short | Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata |
title_sort | mass-spectrometry-based spatial proteomics data analysis using proloc and prolocdata |
topic | Applications Notes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998135/ https://www.ncbi.nlm.nih.gov/pubmed/24413670 http://dx.doi.org/10.1093/bioinformatics/btu013 |
work_keys_str_mv | AT gattolaurent massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata AT breckelslisam massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata AT wieczoreksamuel massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata AT burgerthomas massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata AT lilleykathryns massspectrometrybasedspatialproteomicsdataanalysisusingprolocandprolocdata |