Cargando…
Novel nano-rough polymers for cartilage tissue engineering
This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU) and polycaprolactone (PCL). Nanoembossed polyurethane (NPU) and nanoembossed polycaprolactone (NPCL) were produced by the casting o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998868/ https://www.ncbi.nlm.nih.gov/pubmed/24790427 http://dx.doi.org/10.2147/IJN.S55865 |
_version_ | 1782313425619124224 |
---|---|
author | Balasundaram, Ganesan Storey, Daniel M Webster, Thomas J |
author_facet | Balasundaram, Ganesan Storey, Daniel M Webster, Thomas J |
author_sort | Balasundaram, Ganesan |
collection | PubMed |
description | This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU) and polycaprolactone (PCL). Nanoembossed polyurethane (NPU) and nanoembossed polycaprolactone (NPCL) were produced by the casting of PU and PCL over a plasma-deposited, spiky nanofeatured crystalline titanium (Ti) surface. The variables used in the process of making the spiky Ti surface can be altered to change the physical properties of the spiky particles, and thus, the cast polymer substrate surface can be altered. The spiky Ti surface is reusable to produce additional nanopolymer castings. In this study, control plain PU and PCL polymers were produced by casting the polymers over a plain Ti surface (without spikes). All polymer surface morphologies were characterized using both scanning electron microscopy and atomic force microscopy, and their surface energies were measured using liquid contact angle measurements. The results revealed that both NPU and NPCL possessed a higher degree of nanometer surface roughness and higher surface energy compared with their respective unaltered polymers. Further, an in vitro study was carried out to determine chondrocyte (cartilage-producing cells) functions on NPU and NPCL compared with on control plain polymers. Results of this study provided evidence of increased chondrocyte numbers on NPU and NPCL compared with their respective plain polymers after periods of up to 7 days. Moreover, the results provide evidence of greater intracellular protein production and collagen secretion by chondrocytes cultured on NPU and NPCL compared with control plain polymers. In summary, the present in vitro results of increased chondrocyte functions on NPU and NPCL suggest these materials may be suitable for numerous polymer-based cartilage tissue-engineering applications and, thus, deserve further investigation. |
format | Online Article Text |
id | pubmed-3998868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-39988682014-04-30 Novel nano-rough polymers for cartilage tissue engineering Balasundaram, Ganesan Storey, Daniel M Webster, Thomas J Int J Nanomedicine Original Research This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU) and polycaprolactone (PCL). Nanoembossed polyurethane (NPU) and nanoembossed polycaprolactone (NPCL) were produced by the casting of PU and PCL over a plasma-deposited, spiky nanofeatured crystalline titanium (Ti) surface. The variables used in the process of making the spiky Ti surface can be altered to change the physical properties of the spiky particles, and thus, the cast polymer substrate surface can be altered. The spiky Ti surface is reusable to produce additional nanopolymer castings. In this study, control plain PU and PCL polymers were produced by casting the polymers over a plain Ti surface (without spikes). All polymer surface morphologies were characterized using both scanning electron microscopy and atomic force microscopy, and their surface energies were measured using liquid contact angle measurements. The results revealed that both NPU and NPCL possessed a higher degree of nanometer surface roughness and higher surface energy compared with their respective unaltered polymers. Further, an in vitro study was carried out to determine chondrocyte (cartilage-producing cells) functions on NPU and NPCL compared with on control plain polymers. Results of this study provided evidence of increased chondrocyte numbers on NPU and NPCL compared with their respective plain polymers after periods of up to 7 days. Moreover, the results provide evidence of greater intracellular protein production and collagen secretion by chondrocytes cultured on NPU and NPCL compared with control plain polymers. In summary, the present in vitro results of increased chondrocyte functions on NPU and NPCL suggest these materials may be suitable for numerous polymer-based cartilage tissue-engineering applications and, thus, deserve further investigation. Dove Medical Press 2014-04-15 /pmc/articles/PMC3998868/ /pubmed/24790427 http://dx.doi.org/10.2147/IJN.S55865 Text en © 2014 Balasundaram et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Balasundaram, Ganesan Storey, Daniel M Webster, Thomas J Novel nano-rough polymers for cartilage tissue engineering |
title | Novel nano-rough polymers for cartilage tissue engineering |
title_full | Novel nano-rough polymers for cartilage tissue engineering |
title_fullStr | Novel nano-rough polymers for cartilage tissue engineering |
title_full_unstemmed | Novel nano-rough polymers for cartilage tissue engineering |
title_short | Novel nano-rough polymers for cartilage tissue engineering |
title_sort | novel nano-rough polymers for cartilage tissue engineering |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998868/ https://www.ncbi.nlm.nih.gov/pubmed/24790427 http://dx.doi.org/10.2147/IJN.S55865 |
work_keys_str_mv | AT balasundaramganesan novelnanoroughpolymersforcartilagetissueengineering AT storeydanielm novelnanoroughpolymersforcartilagetissueengineering AT websterthomasj novelnanoroughpolymersforcartilagetissueengineering |