Cargando…

CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex

Converging epidemiological studies indicate that cannabis abuse during adolescence increases the risk of developing psychosis and prefrontal cortex (PFC)-dependent cognitive impairments later in life. However, the mechanisms underlying the adolescent susceptibility to chronic cannabis exposure are p...

Descripción completa

Detalles Bibliográficos
Autores principales: Cass, Daryn K., Flores-Barrera, Eden, Thomases, Daniel R., Vital, Webster F., Caballero, Adriana, Tseng, Kuei Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999247/
https://www.ncbi.nlm.nih.gov/pubmed/24589887
http://dx.doi.org/10.1038/mp.2014.14
_version_ 1782313478342574080
author Cass, Daryn K.
Flores-Barrera, Eden
Thomases, Daniel R.
Vital, Webster F.
Caballero, Adriana
Tseng, Kuei Y.
author_facet Cass, Daryn K.
Flores-Barrera, Eden
Thomases, Daniel R.
Vital, Webster F.
Caballero, Adriana
Tseng, Kuei Y.
author_sort Cass, Daryn K.
collection PubMed
description Converging epidemiological studies indicate that cannabis abuse during adolescence increases the risk of developing psychosis and prefrontal cortex (PFC)-dependent cognitive impairments later in life. However, the mechanisms underlying the adolescent susceptibility to chronic cannabis exposure are poorly understood. Given that the psychoactive constituent of cannabis binds to the CB1 cannabinoid receptor, the present study was designed to determine the impact of a CB1 receptor agonist (WIN) during specific windows of adolescence on the functional maturation of the rat PFC. By means of local field potential (LFP) recordings and ventral hippocampal stimulation in vivo, we found that a history of WIN exposure during early (postnatal day -P- 35-40) or mid-(P40-45) adolescence, but not in late adolescence (P50-55) or adulthood (P75-80), is sufficient to yield a state of frequency-dependent prefrontal disinhibition in adulthood comparable to that seen in the juvenile PFC. Remarkably, this prefrontal disinhibition could be normalized following a single acute local infusion of the GABA-Aα1 positive allosteric modulator Indiplon, suggesting that adolescent exposure to WIN causes a functional downregulation of GABAergic transmission in the PFC. Accordingly, in vitro recordings from adult rats exposed to WIN during adolescence demonstrate that local prefrontal GABAergic transmission onto layer V pyramidal neurons is markedly reduced to the level seen in the P30-35 PFC. Together, these results indicate that early and mid-adolescence constitute a critical period during which repeated CB1 receptor stimulation is sufficient to elicit an enduring state of PFC network disinhibition resulting from a developmental impairment of local prefrontal GABAergic transmission.
format Online
Article
Text
id pubmed-3999247
institution National Center for Biotechnology Information
language English
publishDate 2014
record_format MEDLINE/PubMed
spelling pubmed-39992472014-11-01 CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex Cass, Daryn K. Flores-Barrera, Eden Thomases, Daniel R. Vital, Webster F. Caballero, Adriana Tseng, Kuei Y. Mol Psychiatry Article Converging epidemiological studies indicate that cannabis abuse during adolescence increases the risk of developing psychosis and prefrontal cortex (PFC)-dependent cognitive impairments later in life. However, the mechanisms underlying the adolescent susceptibility to chronic cannabis exposure are poorly understood. Given that the psychoactive constituent of cannabis binds to the CB1 cannabinoid receptor, the present study was designed to determine the impact of a CB1 receptor agonist (WIN) during specific windows of adolescence on the functional maturation of the rat PFC. By means of local field potential (LFP) recordings and ventral hippocampal stimulation in vivo, we found that a history of WIN exposure during early (postnatal day -P- 35-40) or mid-(P40-45) adolescence, but not in late adolescence (P50-55) or adulthood (P75-80), is sufficient to yield a state of frequency-dependent prefrontal disinhibition in adulthood comparable to that seen in the juvenile PFC. Remarkably, this prefrontal disinhibition could be normalized following a single acute local infusion of the GABA-Aα1 positive allosteric modulator Indiplon, suggesting that adolescent exposure to WIN causes a functional downregulation of GABAergic transmission in the PFC. Accordingly, in vitro recordings from adult rats exposed to WIN during adolescence demonstrate that local prefrontal GABAergic transmission onto layer V pyramidal neurons is markedly reduced to the level seen in the P30-35 PFC. Together, these results indicate that early and mid-adolescence constitute a critical period during which repeated CB1 receptor stimulation is sufficient to elicit an enduring state of PFC network disinhibition resulting from a developmental impairment of local prefrontal GABAergic transmission. 2014-03-04 2014-05 /pmc/articles/PMC3999247/ /pubmed/24589887 http://dx.doi.org/10.1038/mp.2014.14 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Cass, Daryn K.
Flores-Barrera, Eden
Thomases, Daniel R.
Vital, Webster F.
Caballero, Adriana
Tseng, Kuei Y.
CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex
title CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex
title_full CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex
title_fullStr CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex
title_full_unstemmed CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex
title_short CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex
title_sort cb1 cannabinoid receptor stimulation during adolescence impairs the maturation of gaba function in the adult rat prefrontal cortex
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999247/
https://www.ncbi.nlm.nih.gov/pubmed/24589887
http://dx.doi.org/10.1038/mp.2014.14
work_keys_str_mv AT cassdarynk cb1cannabinoidreceptorstimulationduringadolescenceimpairsthematurationofgabafunctionintheadultratprefrontalcortex
AT floresbarreraeden cb1cannabinoidreceptorstimulationduringadolescenceimpairsthematurationofgabafunctionintheadultratprefrontalcortex
AT thomasesdanielr cb1cannabinoidreceptorstimulationduringadolescenceimpairsthematurationofgabafunctionintheadultratprefrontalcortex
AT vitalwebsterf cb1cannabinoidreceptorstimulationduringadolescenceimpairsthematurationofgabafunctionintheadultratprefrontalcortex
AT caballeroadriana cb1cannabinoidreceptorstimulationduringadolescenceimpairsthematurationofgabafunctionintheadultratprefrontalcortex
AT tsengkueiy cb1cannabinoidreceptorstimulationduringadolescenceimpairsthematurationofgabafunctionintheadultratprefrontalcortex