Cargando…

Egg Yolk and Glycerol Requirements for Freezing Boar Spermatozoa Treated with Methyl β-Cyclodextrin or Cholesterol-loaded Cyclodextrin

Egg yolk (EY) and glycerol are common constituents of extenders used for sperm cryopreservation. It has been demonstrated that using cholesterol-loaded cyclodextrins (CLC) improves sperm cryosurvival in several species. However, standard freezing extenders might not be the most appropriate for CLC-t...

Descripción completa

Detalles Bibliográficos
Autores principales: BLANCH, Eva, TOMÁS, Cristina, HERNÁNDEZ, Marta, ROCA, Jordi, MARTÍNEZ, Emilio A., VÁZQUEZ, Juan M., MOCÉ, Eva
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society for Reproduction and Development 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999393/
https://www.ncbi.nlm.nih.gov/pubmed/24492655
http://dx.doi.org/10.1262/jrd.2013-073
Descripción
Sumario:Egg yolk (EY) and glycerol are common constituents of extenders used for sperm cryopreservation. It has been demonstrated that using cholesterol-loaded cyclodextrins (CLC) improves sperm cryosurvival in several species. However, standard freezing extenders might not be the most appropriate for CLC-treated sperm. This study evaluated the EY and glycerol requirements for freezing CLC-treated boar spermatozoa. Semen samples from 34 ejaculates coming from 4 boars were used. Each ejaculate was split into three aliquots: one was used untreated (control), and the other two were treated with 1 mg of CLC or methyl-β-cyclodextrin/120 × 10(6) sperm for 15 min at 22 C prior to cryopreservation. Our results indicated that reducing the concentration of EY was detrimental for sperm viability after thawing (31.57 ± 2 vs. 19.89% ± 2 for 20 and 10% EY, respectively; P <0.05), even in semen treated with CLC. On the other hand, it was observed that the traditional concentration of glycerol (3%) was not the appropriate for freezing CLC-treated sperm (61.10 ± 3 vs. 47.87% ± 3 viable sperm for control and CLC-treated sperm, respectively; P <0.05). Thus, CLC-treated sperm showed a higher tolerance to high glycerol concentrations (5%) in terms of sperm viability (59.19% ± 3) than non-treated sperm (45.58% ± 3; P<0.05). Therefore, it could be necessary to modify the freezing extenders for CLC-treated sperm. Nevertheless, additional studies will be needed to evaluate alternative cryoprotectants and to determine the effect of high glycerol concentrations on sperm functionality.