Cargando…
Dimerisation, rhodium complex formation and rearrangements of N-heterocyclic carbenes of indazoles
Deprotonation of indazolium salts at low temperatures gives N-heterocyclic carbenes of indazoles (indazol-3-ylidenes) which can be trapped as rhodium complexes (X-ray analysis). In the absence of Rh, the indazol-3-ylidenes spontaneously dimerize under ring cleavage of one of the N,N-bonds and ring c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999838/ https://www.ncbi.nlm.nih.gov/pubmed/24778738 http://dx.doi.org/10.3762/bjoc.10.79 |
Sumario: | Deprotonation of indazolium salts at low temperatures gives N-heterocyclic carbenes of indazoles (indazol-3-ylidenes) which can be trapped as rhodium complexes (X-ray analysis). In the absence of Rh, the indazol-3-ylidenes spontaneously dimerize under ring cleavage of one of the N,N-bonds and ring closure to an indazole–indole spiro compound which possesses an exocyclic imine group. The E/Z isomers of the imines can be separated by column chromatography when methanol is used as eluent. We present results of a single crystal X-ray analysis of one of the E-isomers, which equilibrate in solution as well as in the solid state. Heating of the indazole–indole spiro compounds results in the formation of quinazolines by a ring-cleavage/ring-closure sequence (X-ray analysis). Results of DFT calculations are presented. |
---|