Cargando…
The softening of human bladder cancer cells happens at an early stage of the malignancy process
Various studies have demonstrated that alterations in the deformability of cancerous cells are strongly linked to the actin cytoskeleton. By using atomic force microscopy (AFM), it is possible to determine such changes in a quantitative way in order to distinguish cancerous from non-malignant cells....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999871/ https://www.ncbi.nlm.nih.gov/pubmed/24778971 http://dx.doi.org/10.3762/bjnano.5.52 |
_version_ | 1782313552369942528 |
---|---|
author | Ramos, Jorge R Pabijan, Joanna Garcia, Ricardo Lekka, Malgorzata |
author_facet | Ramos, Jorge R Pabijan, Joanna Garcia, Ricardo Lekka, Malgorzata |
author_sort | Ramos, Jorge R |
collection | PubMed |
description | Various studies have demonstrated that alterations in the deformability of cancerous cells are strongly linked to the actin cytoskeleton. By using atomic force microscopy (AFM), it is possible to determine such changes in a quantitative way in order to distinguish cancerous from non-malignant cells. In the work presented here, the elastic properties of human bladder cells were determined by means of AFM. The measurements show that non-malignant bladder HCV29 cells are stiffer (higher Young’s modulus) than cancerous cells (HTB-9, HT1376, and T24 cell lines). However, independently of the histological grade of the studied bladder cancer cells, all cancerous cells possess a similar level of the deformability of about a few kilopascals, significantly lower than non-malignant cells. This underlines the diagnostic character of stiffness that can be used as a biomarker of bladder cancer. Similar stiffness levels, observed for cancerous cells, cannot be fully explained by the organization of the actin cytoskeleton since it is different in all malignant cells. Our results underline that it is neither the spatial organization of the actin filaments nor the presence of stress fibers, but the overall density and their 3D-organization in a probing volume play the dominant role in controlling the elastic response of the cancerous cell to an external force. |
format | Online Article Text |
id | pubmed-3999871 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-39998712014-04-28 The softening of human bladder cancer cells happens at an early stage of the malignancy process Ramos, Jorge R Pabijan, Joanna Garcia, Ricardo Lekka, Malgorzata Beilstein J Nanotechnol Full Research Paper Various studies have demonstrated that alterations in the deformability of cancerous cells are strongly linked to the actin cytoskeleton. By using atomic force microscopy (AFM), it is possible to determine such changes in a quantitative way in order to distinguish cancerous from non-malignant cells. In the work presented here, the elastic properties of human bladder cells were determined by means of AFM. The measurements show that non-malignant bladder HCV29 cells are stiffer (higher Young’s modulus) than cancerous cells (HTB-9, HT1376, and T24 cell lines). However, independently of the histological grade of the studied bladder cancer cells, all cancerous cells possess a similar level of the deformability of about a few kilopascals, significantly lower than non-malignant cells. This underlines the diagnostic character of stiffness that can be used as a biomarker of bladder cancer. Similar stiffness levels, observed for cancerous cells, cannot be fully explained by the organization of the actin cytoskeleton since it is different in all malignant cells. Our results underline that it is neither the spatial organization of the actin filaments nor the presence of stress fibers, but the overall density and their 3D-organization in a probing volume play the dominant role in controlling the elastic response of the cancerous cell to an external force. Beilstein-Institut 2014-04-10 /pmc/articles/PMC3999871/ /pubmed/24778971 http://dx.doi.org/10.3762/bjnano.5.52 Text en Copyright © 2014, Ramos et al. https://creativecommons.org/licenses/by/2.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
spellingShingle | Full Research Paper Ramos, Jorge R Pabijan, Joanna Garcia, Ricardo Lekka, Malgorzata The softening of human bladder cancer cells happens at an early stage of the malignancy process |
title | The softening of human bladder cancer cells happens at an early stage of the malignancy process |
title_full | The softening of human bladder cancer cells happens at an early stage of the malignancy process |
title_fullStr | The softening of human bladder cancer cells happens at an early stage of the malignancy process |
title_full_unstemmed | The softening of human bladder cancer cells happens at an early stage of the malignancy process |
title_short | The softening of human bladder cancer cells happens at an early stage of the malignancy process |
title_sort | softening of human bladder cancer cells happens at an early stage of the malignancy process |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999871/ https://www.ncbi.nlm.nih.gov/pubmed/24778971 http://dx.doi.org/10.3762/bjnano.5.52 |
work_keys_str_mv | AT ramosjorger thesofteningofhumanbladdercancercellshappensatanearlystageofthemalignancyprocess AT pabijanjoanna thesofteningofhumanbladdercancercellshappensatanearlystageofthemalignancyprocess AT garciaricardo thesofteningofhumanbladdercancercellshappensatanearlystageofthemalignancyprocess AT lekkamalgorzata thesofteningofhumanbladdercancercellshappensatanearlystageofthemalignancyprocess AT ramosjorger softeningofhumanbladdercancercellshappensatanearlystageofthemalignancyprocess AT pabijanjoanna softeningofhumanbladdercancercellshappensatanearlystageofthemalignancyprocess AT garciaricardo softeningofhumanbladdercancercellshappensatanearlystageofthemalignancyprocess AT lekkamalgorzata softeningofhumanbladdercancercellshappensatanearlystageofthemalignancyprocess |