Cargando…
Modulation of adipocyte differentiation by omega-3 polyunsaturated fatty acids involves the ubiquitin-proteasome system
We have evaluated the effects of three different omega-3 polyunsaturated fatty acids (ω-3 PUFAs) – docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) on fat accumulation and expression of adipogenic and inflammatory markers using both 3T3-L1 pre-adipocytes and di...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000111/ https://www.ncbi.nlm.nih.gov/pubmed/24834523 http://dx.doi.org/10.1111/jcmm.12194 |
Sumario: | We have evaluated the effects of three different omega-3 polyunsaturated fatty acids (ω-3 PUFAs) – docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) on fat accumulation and expression of adipogenic and inflammatory markers using both 3T3-L1 pre-adipocytes and differentiated 3T3-L1 adipocytes. Our results indicate that ω-3 PUFAs induce the degradation of fatty acid synthase through the ubiquitin-proteasome system, which is likely to have beneficial metabolic effect on adipose cells. Omega-3 PUFAs also increase overall levels of polyubiquitinated proteins, at least in part through decreasing the expression of proteasome subunits. Moreover, adipocytes are resistant to proteasome inhibition, which induces adipophilin while decreasing perilipin expression. On the other hand, ω-3 PUFAs decrease expression of SREBP1 while inducing expression of adipophilin and GLUT4. Moreover, all three ω-3 PUFAs appear to induce tumour necrosis factor-α without affecting NFκB levels. All three ω-3 PUFAs appear to have overall similar effects. Further research is needed to elucidate their mechanism of action. |
---|