Cargando…
Overexpression of STAMP2 suppresses atherosclerosis and stabilizes plaques in diabetic mice
Our research aims to evaluate the function of the STAMP2 gene, an important trigger in insulin resistance (IR), and explore its role in macrophage apoptosis in diabetic atherosclerotic vulnerable plaques. The characteristics of diabetic mice were measured by serial metabolite and pathology tests. Th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000123/ https://www.ncbi.nlm.nih.gov/pubmed/24467451 http://dx.doi.org/10.1111/jcmm.12222 |
_version_ | 1782313580604948480 |
---|---|
author | Wang, Jia Han, Lu Wang, Zhi-hao Ding, Wen-yuan Shang, Yuan-yuan Tang, Meng-xiong Li, Wen-bo Zhang, Yun Zhang, Wei Zhong, Ming |
author_facet | Wang, Jia Han, Lu Wang, Zhi-hao Ding, Wen-yuan Shang, Yuan-yuan Tang, Meng-xiong Li, Wen-bo Zhang, Yun Zhang, Wei Zhong, Ming |
author_sort | Wang, Jia |
collection | PubMed |
description | Our research aims to evaluate the function of the STAMP2 gene, an important trigger in insulin resistance (IR), and explore its role in macrophage apoptosis in diabetic atherosclerotic vulnerable plaques. The characteristics of diabetic mice were measured by serial metabolite and pathology tests. The level of STAMP2 was measured by RT-PCR and Western blot. The plaque area, lipid and collagen content of brachiocephalic artery plaques were measured by histopathological analyses, and the macrophage apoptosis was measured by TUNEL. Correlation of STAMP2/Akt signaling pathway and macrophage apoptosis was validated by Ad-STAMP2 transfection and STAMP2 siRNA inhibition. The diabetic mice showed typical features of IR, hyperglycaemia. Overexpression of STAMP2 ameliorated IR and decreased serum glucose level. In brachiocephalic lesions, lipid content, macrophage quantity and the vulnerability index were significantly decreased by overexpression of STAMP2. Moreover, the numbers of apoptotic cells and macrophages in lesions were both significantly decreased. In vitro, both mRNA and protein expressions of STAMP2 were increased under high glucose treatment. P-Akt was highly expressed and caspase-3 was decreased after overexpression of STAMP2. However, expression of p-Akt protein was decreased and caspase-3 was increased when STAMP2 was inhibited by siRNA. STAMP2 overexpression could exert a protective effect on diabetic atherosclerosis by reducing IR and diminishing macrophage apoptosis. |
format | Online Article Text |
id | pubmed-4000123 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | John Wiley & Sons Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-40001232014-12-03 Overexpression of STAMP2 suppresses atherosclerosis and stabilizes plaques in diabetic mice Wang, Jia Han, Lu Wang, Zhi-hao Ding, Wen-yuan Shang, Yuan-yuan Tang, Meng-xiong Li, Wen-bo Zhang, Yun Zhang, Wei Zhong, Ming J Cell Mol Med Original Articles Our research aims to evaluate the function of the STAMP2 gene, an important trigger in insulin resistance (IR), and explore its role in macrophage apoptosis in diabetic atherosclerotic vulnerable plaques. The characteristics of diabetic mice were measured by serial metabolite and pathology tests. The level of STAMP2 was measured by RT-PCR and Western blot. The plaque area, lipid and collagen content of brachiocephalic artery plaques were measured by histopathological analyses, and the macrophage apoptosis was measured by TUNEL. Correlation of STAMP2/Akt signaling pathway and macrophage apoptosis was validated by Ad-STAMP2 transfection and STAMP2 siRNA inhibition. The diabetic mice showed typical features of IR, hyperglycaemia. Overexpression of STAMP2 ameliorated IR and decreased serum glucose level. In brachiocephalic lesions, lipid content, macrophage quantity and the vulnerability index were significantly decreased by overexpression of STAMP2. Moreover, the numbers of apoptotic cells and macrophages in lesions were both significantly decreased. In vitro, both mRNA and protein expressions of STAMP2 were increased under high glucose treatment. P-Akt was highly expressed and caspase-3 was decreased after overexpression of STAMP2. However, expression of p-Akt protein was decreased and caspase-3 was increased when STAMP2 was inhibited by siRNA. STAMP2 overexpression could exert a protective effect on diabetic atherosclerosis by reducing IR and diminishing macrophage apoptosis. John Wiley & Sons Ltd 2014-04 2014-01-22 /pmc/articles/PMC4000123/ /pubmed/24467451 http://dx.doi.org/10.1111/jcmm.12222 Text en © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine. |
spellingShingle | Original Articles Wang, Jia Han, Lu Wang, Zhi-hao Ding, Wen-yuan Shang, Yuan-yuan Tang, Meng-xiong Li, Wen-bo Zhang, Yun Zhang, Wei Zhong, Ming Overexpression of STAMP2 suppresses atherosclerosis and stabilizes plaques in diabetic mice |
title | Overexpression of STAMP2 suppresses atherosclerosis and stabilizes plaques in diabetic mice |
title_full | Overexpression of STAMP2 suppresses atherosclerosis and stabilizes plaques in diabetic mice |
title_fullStr | Overexpression of STAMP2 suppresses atherosclerosis and stabilizes plaques in diabetic mice |
title_full_unstemmed | Overexpression of STAMP2 suppresses atherosclerosis and stabilizes plaques in diabetic mice |
title_short | Overexpression of STAMP2 suppresses atherosclerosis and stabilizes plaques in diabetic mice |
title_sort | overexpression of stamp2 suppresses atherosclerosis and stabilizes plaques in diabetic mice |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000123/ https://www.ncbi.nlm.nih.gov/pubmed/24467451 http://dx.doi.org/10.1111/jcmm.12222 |
work_keys_str_mv | AT wangjia overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice AT hanlu overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice AT wangzhihao overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice AT dingwenyuan overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice AT shangyuanyuan overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice AT tangmengxiong overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice AT liwenbo overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice AT zhangyun overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice AT zhangwei overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice AT zhongming overexpressionofstamp2suppressesatherosclerosisandstabilizesplaquesindiabeticmice |