Cargando…
Integrating Gene Expression and Protein Interaction Data for Signaling Pathway Prediction of Alzheimer's Disease
Discovering the signaling pathway and regulatory network would provide significant advance in genome-wide understanding of pathogenesis of human diseases. Despite the rich transcriptome data, the limitation for microarray data is unable to detect changes beyond transcriptional level and insufficient...
Autores principales: | Kong, Wei, Zhang, Jingmao, Mou, Xiaoyang, Yang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000644/ https://www.ncbi.nlm.nih.gov/pubmed/24812571 http://dx.doi.org/10.1155/2014/340758 |
Ejemplares similares
-
Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data
por: Kong, Wei, et al.
Publicado: (2011) -
Identification of active signaling pathways by integrating gene expression and protein interaction data
por: Kabir, Md Humayun, et al.
Publicado: (2018) -
Independent component analysis of Alzheimer's DNA microarray gene expression data
por: Kong, Wei, et al.
Publicado: (2009) -
Prediction of Alzheimer’s Disease-Associated Genes by Integration of GWAS Summary Data and Expression Data
por: Hao, Sicheng, et al.
Publicado: (2019) -
Dynamic Regulatory Network Reconstruction for Alzheimer's Disease Based on Matrix Decomposition Techniques
por: Kong, Wei, et al.
Publicado: (2014)