Cargando…

An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection

Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bountris, Panagiotis, Haritou, Maria, Pouliakis, Abraham, Margari, Niki, Kyrgiou, Maria, Spathis, Aris, Pappas, Asimakis, Panayiotides, Ioannis, Paraskevaidis, Evangelos A., Karakitsos, Petros, Koutsouris, Dimitrios-Dionyssios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000928/
https://www.ncbi.nlm.nih.gov/pubmed/24812614
http://dx.doi.org/10.1155/2014/341483
_version_ 1782313667374612480
author Bountris, Panagiotis
Haritou, Maria
Pouliakis, Abraham
Margari, Niki
Kyrgiou, Maria
Spathis, Aris
Pappas, Asimakis
Panayiotides, Ioannis
Paraskevaidis, Evangelos A.
Karakitsos, Petros
Koutsouris, Dimitrios-Dionyssios
author_facet Bountris, Panagiotis
Haritou, Maria
Pouliakis, Abraham
Margari, Niki
Kyrgiou, Maria
Spathis, Aris
Pappas, Asimakis
Panayiotides, Ioannis
Paraskevaidis, Evangelos A.
Karakitsos, Petros
Koutsouris, Dimitrios-Dionyssios
author_sort Bountris, Panagiotis
collection PubMed
description Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions.
format Online
Article
Text
id pubmed-4000928
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-40009282014-05-08 An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection Bountris, Panagiotis Haritou, Maria Pouliakis, Abraham Margari, Niki Kyrgiou, Maria Spathis, Aris Pappas, Asimakis Panayiotides, Ioannis Paraskevaidis, Evangelos A. Karakitsos, Petros Koutsouris, Dimitrios-Dionyssios Biomed Res Int Research Article Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions. Hindawi Publishing Corporation 2014 2014-04-09 /pmc/articles/PMC4000928/ /pubmed/24812614 http://dx.doi.org/10.1155/2014/341483 Text en Copyright © 2014 Panagiotis Bountris et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bountris, Panagiotis
Haritou, Maria
Pouliakis, Abraham
Margari, Niki
Kyrgiou, Maria
Spathis, Aris
Pappas, Asimakis
Panayiotides, Ioannis
Paraskevaidis, Evangelos A.
Karakitsos, Petros
Koutsouris, Dimitrios-Dionyssios
An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection
title An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection
title_full An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection
title_fullStr An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection
title_full_unstemmed An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection
title_short An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection
title_sort intelligent clinical decision support system for patient-specific predictions to improve cervical intraepithelial neoplasia detection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000928/
https://www.ncbi.nlm.nih.gov/pubmed/24812614
http://dx.doi.org/10.1155/2014/341483
work_keys_str_mv AT bountrispanagiotis anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT haritoumaria anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT pouliakisabraham anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT margariniki anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT kyrgioumaria anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT spathisaris anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT pappasasimakis anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT panayiotidesioannis anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT paraskevaidisevangelosa anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT karakitsospetros anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT koutsourisdimitriosdionyssios anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT bountrispanagiotis intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT haritoumaria intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT pouliakisabraham intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT margariniki intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT kyrgioumaria intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT spathisaris intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT pappasasimakis intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT panayiotidesioannis intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT paraskevaidisevangelosa intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT karakitsospetros intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection
AT koutsourisdimitriosdionyssios intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection