Cargando…
An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection
Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes,...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000928/ https://www.ncbi.nlm.nih.gov/pubmed/24812614 http://dx.doi.org/10.1155/2014/341483 |
_version_ | 1782313667374612480 |
---|---|
author | Bountris, Panagiotis Haritou, Maria Pouliakis, Abraham Margari, Niki Kyrgiou, Maria Spathis, Aris Pappas, Asimakis Panayiotides, Ioannis Paraskevaidis, Evangelos A. Karakitsos, Petros Koutsouris, Dimitrios-Dionyssios |
author_facet | Bountris, Panagiotis Haritou, Maria Pouliakis, Abraham Margari, Niki Kyrgiou, Maria Spathis, Aris Pappas, Asimakis Panayiotides, Ioannis Paraskevaidis, Evangelos A. Karakitsos, Petros Koutsouris, Dimitrios-Dionyssios |
author_sort | Bountris, Panagiotis |
collection | PubMed |
description | Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions. |
format | Online Article Text |
id | pubmed-4000928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-40009282014-05-08 An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection Bountris, Panagiotis Haritou, Maria Pouliakis, Abraham Margari, Niki Kyrgiou, Maria Spathis, Aris Pappas, Asimakis Panayiotides, Ioannis Paraskevaidis, Evangelos A. Karakitsos, Petros Koutsouris, Dimitrios-Dionyssios Biomed Res Int Research Article Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions. Hindawi Publishing Corporation 2014 2014-04-09 /pmc/articles/PMC4000928/ /pubmed/24812614 http://dx.doi.org/10.1155/2014/341483 Text en Copyright © 2014 Panagiotis Bountris et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bountris, Panagiotis Haritou, Maria Pouliakis, Abraham Margari, Niki Kyrgiou, Maria Spathis, Aris Pappas, Asimakis Panayiotides, Ioannis Paraskevaidis, Evangelos A. Karakitsos, Petros Koutsouris, Dimitrios-Dionyssios An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection |
title | An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection |
title_full | An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection |
title_fullStr | An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection |
title_full_unstemmed | An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection |
title_short | An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection |
title_sort | intelligent clinical decision support system for patient-specific predictions to improve cervical intraepithelial neoplasia detection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000928/ https://www.ncbi.nlm.nih.gov/pubmed/24812614 http://dx.doi.org/10.1155/2014/341483 |
work_keys_str_mv | AT bountrispanagiotis anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT haritoumaria anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT pouliakisabraham anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT margariniki anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT kyrgioumaria anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT spathisaris anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT pappasasimakis anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT panayiotidesioannis anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT paraskevaidisevangelosa anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT karakitsospetros anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT koutsourisdimitriosdionyssios anintelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT bountrispanagiotis intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT haritoumaria intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT pouliakisabraham intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT margariniki intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT kyrgioumaria intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT spathisaris intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT pappasasimakis intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT panayiotidesioannis intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT paraskevaidisevangelosa intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT karakitsospetros intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection AT koutsourisdimitriosdionyssios intelligentclinicaldecisionsupportsystemforpatientspecificpredictionstoimprovecervicalintraepithelialneoplasiadetection |