Cargando…
Efficient generation of connectivity in neuronal networks from simulator-independent descriptions
Simulator-independent descriptions of connectivity in neuronal networks promise greater ease of model sharing, improved reproducibility of simulation results, and reduced programming effort for computational neuroscientists. However, until now, enabling the use of such descriptions in a given simula...
Autores principales: | Djurfeldt, Mikael, Davison, Andrew P., Eppler, Jochen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001034/ https://www.ncbi.nlm.nih.gov/pubmed/24795620 http://dx.doi.org/10.3389/fninf.2014.00043 |
Ejemplares similares
-
PyNN: A Common Interface for Neuronal Network Simulators
por: Davison, Andrew P., et al.
Publicado: (2009) -
The Connection-set Algebra: a formalism for the representation of connectivity structure in neuronal network models, implementations in Python and C++, and their use in simulators
por: Djurfeldt, Mikael
Publicado: (2011) -
Efficient Integration of Coupled Electrical-Chemical Systems in Multiscale Neuronal Simulations
por: Brocke, Ekaterina, et al.
Publicado: (2016) -
Run-Time Interoperability Between Neuronal Network Simulators Based on the MUSIC Framework
por: Djurfeldt, Mikael, et al.
Publicado: (2010) -
Flexible and efficient recording of neuronal properties in large network simulations: The NEST Multimeter
por: Plesser, Hans E, et al.
Publicado: (2011)