Cargando…

Modeling thermal responses in human subjects following extended exposure to radiofrequency energy

BACKGROUND: This study examines the use of a simple thermoregulatory model for the human body exposed to extended (45 minute) exposures to radiofrequency/microwave (RF/MW) energy at different frequencies (100, 450, 2450 MHz) and under different environmental conditions. The exposure levels were comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Foster, Kenneth R, Adair, Eleanor R
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC400246/
https://www.ncbi.nlm.nih.gov/pubmed/14989757
http://dx.doi.org/10.1186/1475-925X-3-4
_version_ 1782121344080543744
author Foster, Kenneth R
Adair, Eleanor R
author_facet Foster, Kenneth R
Adair, Eleanor R
author_sort Foster, Kenneth R
collection PubMed
description BACKGROUND: This study examines the use of a simple thermoregulatory model for the human body exposed to extended (45 minute) exposures to radiofrequency/microwave (RF/MW) energy at different frequencies (100, 450, 2450 MHz) and under different environmental conditions. The exposure levels were comparable to or above present limits for human exposure to RF energy. METHODS: We adapted a compartmental model for the human thermoregulatory system developed by Hardy and Stolwijk, adding power to the torso skin, fat, and muscle compartments to simulate exposure to RF energy. The model uses values for parameters for "standard man" that were originally determined by Hardy and Stolwijk, with no additional adjustment. The model predicts changes in core and skin temperatures, sweat rate, and changes in skin blood flow as a result of RF energy exposure. RESULTS: The model yielded remarkably good quantitative agreement between predicted and measured changes in skin and core temperatures, and qualitative agreement between predicted and measured changes in skin blood flow. The model considerably underpredicted the measured sweat rates. CONCLUSIONS: The model, with previously determined parameter values, was successful in predicting major aspects of human thermoregulatory response to RF energy exposure over a wide frequency range, and at different environmental temperatures. The model was most successful in predicting changes in skin temperature, and it provides insights into the mechanisms by which the heat added to body by RF energy is dissipated to the environment. Several factors are discussed that may have contributed to the failure to account properly for sweat rate. Some features of the data, in particular heating of the legs and ankles during exposure at 100 MHz, would require a more complex model than that considered here.
format Text
id pubmed-400246
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-4002462004-04-30 Modeling thermal responses in human subjects following extended exposure to radiofrequency energy Foster, Kenneth R Adair, Eleanor R Biomed Eng Online Research BACKGROUND: This study examines the use of a simple thermoregulatory model for the human body exposed to extended (45 minute) exposures to radiofrequency/microwave (RF/MW) energy at different frequencies (100, 450, 2450 MHz) and under different environmental conditions. The exposure levels were comparable to or above present limits for human exposure to RF energy. METHODS: We adapted a compartmental model for the human thermoregulatory system developed by Hardy and Stolwijk, adding power to the torso skin, fat, and muscle compartments to simulate exposure to RF energy. The model uses values for parameters for "standard man" that were originally determined by Hardy and Stolwijk, with no additional adjustment. The model predicts changes in core and skin temperatures, sweat rate, and changes in skin blood flow as a result of RF energy exposure. RESULTS: The model yielded remarkably good quantitative agreement between predicted and measured changes in skin and core temperatures, and qualitative agreement between predicted and measured changes in skin blood flow. The model considerably underpredicted the measured sweat rates. CONCLUSIONS: The model, with previously determined parameter values, was successful in predicting major aspects of human thermoregulatory response to RF energy exposure over a wide frequency range, and at different environmental temperatures. The model was most successful in predicting changes in skin temperature, and it provides insights into the mechanisms by which the heat added to body by RF energy is dissipated to the environment. Several factors are discussed that may have contributed to the failure to account properly for sweat rate. Some features of the data, in particular heating of the legs and ankles during exposure at 100 MHz, would require a more complex model than that considered here. BioMed Central 2004-02-28 /pmc/articles/PMC400246/ /pubmed/14989757 http://dx.doi.org/10.1186/1475-925X-3-4 Text en Copyright © 2004 Foster and Adair; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Research
Foster, Kenneth R
Adair, Eleanor R
Modeling thermal responses in human subjects following extended exposure to radiofrequency energy
title Modeling thermal responses in human subjects following extended exposure to radiofrequency energy
title_full Modeling thermal responses in human subjects following extended exposure to radiofrequency energy
title_fullStr Modeling thermal responses in human subjects following extended exposure to radiofrequency energy
title_full_unstemmed Modeling thermal responses in human subjects following extended exposure to radiofrequency energy
title_short Modeling thermal responses in human subjects following extended exposure to radiofrequency energy
title_sort modeling thermal responses in human subjects following extended exposure to radiofrequency energy
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC400246/
https://www.ncbi.nlm.nih.gov/pubmed/14989757
http://dx.doi.org/10.1186/1475-925X-3-4
work_keys_str_mv AT fosterkennethr modelingthermalresponsesinhumansubjectsfollowingextendedexposuretoradiofrequencyenergy
AT adaireleanorr modelingthermalresponsesinhumansubjectsfollowingextendedexposuretoradiofrequencyenergy