Cargando…
Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis
Plants have the ability to detect invading fungi through the perception of chitin fragments released from the fungal cell walls. Plant chitin receptor consists of two types of plasma membrane proteins, CEBiP and CERK1. However, the contribution of these proteins to chitin signaling is different betw...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002583/ https://www.ncbi.nlm.nih.gov/pubmed/23803749 http://dx.doi.org/10.4161/psb.25345 |
Sumario: | Plants have the ability to detect invading fungi through the perception of chitin fragments released from the fungal cell walls. Plant chitin receptor consists of two types of plasma membrane proteins, CEBiP and CERK1. However, the contribution of these proteins to chitin signaling is different between Arabidopsis and rice. In Arabidopsis, it seems CERK1 receptor kinase is enough for both ligand perception and signaling, whereas both CEBiP and OsCERK1 are required for chitin signaling in rice. Here we report that Arabidopsis CEBiP homolog, LYM2, is not involved in chitin signaling but contributes to resistance against a fungal pathogen, Alternaria brassicicola, indicating the presence of a novel disease resistance mechanism in Arabidopsis. |
---|