Cargando…

MiR-519d represses ovarian cancer cell proliferation and enhances cisplatin-mediated cytotoxicity in vitro by targeting XIAP

BACKGROUND: MicroRNAs (miRNAs) are small, noncoding RNAs that are believed to play fundamental roles in tumorigenesis and tumor development at the posttranscriptional level, as negative regulators of gene expression. This study was designed to evaluate the expression and anticancer effect of miR-519...

Descripción completa

Detalles Bibliográficos
Autores principales: Pang, Yingxin, Mao, Hongluan, Shen, Liang, Zhao, Zhe, Liu, Ruihan, Liu, Peishu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003267/
https://www.ncbi.nlm.nih.gov/pubmed/24790458
http://dx.doi.org/10.2147/OTT.S60289
Descripción
Sumario:BACKGROUND: MicroRNAs (miRNAs) are small, noncoding RNAs that are believed to play fundamental roles in tumorigenesis and tumor development at the posttranscriptional level, as negative regulators of gene expression. This study was designed to evaluate the expression and anticancer effect of miR-519d in ovarian cancer. METHODS: The expression levels of miR-519d in ovarian cancer cells and tissues were detected by TaqMan quantitative reverse transcriptase-polymerase chain reaction (TaqMan qRT-PCR; Life Technologies, Carlsbad, CA, USA). The effects of miR-519d on ovarian cancer cell proliferation and cisplatin chemosensitivity were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, flow cytometry, and Western blotting assay. A luciferase reporter assay was performed to validate the miR-519d binding sites on the 3′ untranslated region of X-linked inhibitor of apoptosis protein (XIAP). The expression levels of XIAP mRNA and protein were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting assay, respectively. RESULTS: miR-519d was significantly downregulated in human ovarian cancer cell lines and tissues. Overexpression of miR-519d in ovarian cancer cells decreased cell proliferation and sensitized ovarian cancer cells to cisplatin-induced cell death accompanied by increased activation of caspase 3 and cleavage of poly(adenosine diphosphate [ADP]-ribose) polymerase 1. Bioinformatics analysis indicated that XIAP was a putative target of miR-519d. Overexpression of miR-519d decreased XIAP expression at both the protein and mRNA levels. In contrast, inhibition of miR-519d increased XIAP expression. Luciferase reporter assay confirmed XIAP as a direct target of miR-519d. XIAP mRNA and protein expression levels were inversely correlated with miR-519d expression in ovarian cancer cell lines and tissues. CONCLUSION: These findings indicate that miR-519d suppresses cell proliferation and sensitizes ovarian cancer cells to cisplatin-induced cell death by targeting the XIAP transcript, suggesting that miR-519d plays a tumor-suppressive role in human ovarian cancer and highlighting the therapeutic potential of miR-519d in ovarian cancer treatment.