Cargando…
Looking Back to the Future: Predicting in Vivo Efficacy of Small Molecules versus Mycobacterium tuberculosis
[Image: see text] Selecting and translating in vitro leads for a disease into molecules with in vivo activity in an animal model of the disease is a challenge that takes considerable time and money. As an example, recent years have seen whole-cell phenotypic screens of millions of compounds yielding...
Autores principales: | Ekins, Sean, Pottorf, Richard, Reynolds, Robert C., Williams, Antony J., Clark, Alex M., Freundlich, Joel S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004261/ https://www.ncbi.nlm.nih.gov/pubmed/24665947 http://dx.doi.org/10.1021/ci500077v |
Ejemplares similares
-
Machine Learning Model Analysis and Data Visualization
with Small Molecules Tested in a Mouse Model of Mycobacterium
tuberculosis Infection (2014–2015)
por: Ekins, Sean, et al.
Publicado: (2016) -
Essential Metabolites of Mycobacterium tuberculosis and Their Mimics
por: Lamichhane, Gyanu, et al.
Publicado: (2011) -
Computational Approaches to Identify Molecules Binding
to Mycobacterium tuberculosis KasA
por: Puhl, Ana C., et al.
Publicado: (2020) -
Enhancing Hit Identification in Mycobacterium tuberculosis Drug Discovery Using Validated Dual-Event Bayesian Models
por: Ekins, Sean, et al.
Publicado: (2013) -
Machine learning models identify molecules active against the Ebola virus
in vitro
por: Ekins, Sean, et al.
Publicado: (2017)