Cargando…

Effects of inferior olive lesion on fear-conditioned bradycardia

The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Addition...

Descripción completa

Detalles Bibliográficos
Autores principales: Kotajima, Hiroko, Sakai, Kazuhisa, Hashikawa, Tsutomu, Yanagihara, Dai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004639/
https://www.ncbi.nlm.nih.gov/pubmed/24784584
http://dx.doi.org/10.1097/WNR.0000000000000135
Descripción
Sumario:The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Additionally, climbing fibers originating from the IO are believed to transmit the unconditioned stimulus to the cerebellum in eyeblink conditioning. Studies using fear-conditioned bradycardia showed that the cerebellum is associated with adaptive control of heart rate. However, the role of inputs from the IO to the cerebellum in fear-conditioned bradycardia has not yet been investigated. To examine this possible role, we tested fear-conditioned bradycardia in mice by selective disruption of the IO using 3-acetylpyridine. In a rotarod test, mice with an IO lesion were unable to remain on the rod. The number of neurons of IO nuclei in these mice was decreased to ∼40% compared with control mice. Mice with an IO lesion did not show changes in the mean heart rate or in heart rate responses to a conditioned stimulus, or in their responses to a painful stimulus in a tail-flick test. However, they did show impairment of the acquisition/expression of conditioned bradycardia and attenuation of heart rate responses to a pain stimulus used as an unconditioned stimulus. These results indicate that the IO inputs to the cerebellum play a key role in the acquisition/expression of conditioned bradycardia.