Cargando…
The Generalization Complexity Measure for Continuous Input Data
We introduce in this work an extension for the generalization complexity measure to continuous input data. The measure, originally defined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected when using a supervised classifier like a neu...
Autores principales: | Gómez, Iván, Cannas, Sergio A., Osenda, Omar, Jerez, José M., Franco, Leonardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005069/ https://www.ncbi.nlm.nih.gov/pubmed/24983000 http://dx.doi.org/10.1155/2014/815156 |
Ejemplares similares
-
Rapid and continuous activity-dependent plasticity of olfactory sensory input
por: Cheetham, Claire E. J., et al.
Publicado: (2016) -
Temporal coding of continuously-varying inputs
por: Tripp, Bryan, et al.
Publicado: (2007) -
Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data
por: López-García, Guillermo, et al.
Publicado: (2020) -
Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data
por: Luque-Baena, Rafael Marcos, et al.
Publicado: (2014) -
Generalizing Koopman Theory to Allow for Inputs and Control
por: Proctory, Joshua L., et al.
Publicado: (2018)