Cargando…
Reducing Side Effects of Hiding Sensitive Itemsets in Privacy Preserving Data Mining
Data mining is traditionally adopted to retrieve and analyze knowledge from large amounts of data. Private or confidential data may be sanitized or suppressed before it is shared or published in public. Privacy preserving data mining (PPDM) has thus become an important issue in recent years. The mos...
Autores principales: | Lin, Chun-Wei, Hong, Tzung-Pei, Hsu, Hung-Chuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005146/ https://www.ncbi.nlm.nih.gov/pubmed/24982932 http://dx.doi.org/10.1155/2014/235837 |
Ejemplares similares
-
Efficiently Hiding Sensitive Itemsets with Transaction Deletion Based on Genetic Algorithms
por: Lin, Chun-Wei, et al.
Publicado: (2014) -
A GA-Based Approach to Hide Sensitive High Utility Itemsets
por: Lin, Chun-Wei, et al.
Publicado: (2014) -
Personalized Privacy-Preserving Frequent Itemset Mining Using Randomized Response
por: Sun, Chongjing, et al.
Publicado: (2014) -
Mining Locally Trending High Utility Itemsets
por: Fournier-Viger, Philippe, et al.
Publicado: (2020) -
A primer to frequent itemset mining for bioinformatics
por: Naulaerts, Stefan, et al.
Publicado: (2015)