Cargando…

Proof of principle: quality control of therapeutic cell preparations using senescence-associated DNA-methylation changes

BACKGROUND: Tracking of replicative senescence is of fundamental relevance in cellular therapy. Cell preparations – such as mesenchymal stromal cells (MSCs) - undergo continuous changes during culture expansion, which is reflected by impaired proliferation and loss of differentiation potential. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Schellenberg, Anne, Mauen, Sébastien, Koch, Carmen Mareike, Jans, Ralph, de Waele, Peter, Wagner, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005405/
https://www.ncbi.nlm.nih.gov/pubmed/24755407
http://dx.doi.org/10.1186/1756-0500-7-254
Descripción
Sumario:BACKGROUND: Tracking of replicative senescence is of fundamental relevance in cellular therapy. Cell preparations – such as mesenchymal stromal cells (MSCs) - undergo continuous changes during culture expansion, which is reflected by impaired proliferation and loss of differentiation potential. This process is associated with epigenetic modifications: during in vitro culture, cells acquire senescence-associated DNA methylation (SA-DNAm) changes at specific sites in the genome. We have recently described an Epigenetic-Senescence-Signature that facilitates prediction of the state of cellular aging by analysis of DNAm at six CpG sites (associated with the genes GRM7, CASR, PRAMEF2, SELP, CASP14 and KRTAP13-3), but this has not yet been proven over subsequent passages and with MSCs isolated under good manufacturing practice (GMP) conditions. FINDINGS: MSCs were isolated from human bone marrow and GMP-conform expanded for up to 11 passages. Cumulative population doublings (cPDs) and long-term growth curves were calculated based on cell numbers at each passage. Furthermore, 32 cryopreserved aliquots of these cell preparations were retrospectively analyzed using our Epigenetic-Senescence-Signature: DNAm-level was analyzed at six specific CpGs, and the results were used to estimate cPDs, time of culture expansion, and passage numbers. Overall, predicted and real parameters revealed a good correlation, particularly in cPDs. Based on predicted cPDs we could reconstruct long-term growth curves and demonstrated the continuous increase in replicative senescence on molecular level. CONCLUSION: Epigenetic analysis of specific CpG sites in the genome can be used to estimate the state of cellular aging for quality control of therapeutic cell products.