Cargando…
Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise
Independent component analysis (ICA) has been successfully utilized for analysis of functional MRI (fMRI) data for task related as well as resting state studies. Although it holds the promise of becoming an unbiased data-driven analysis technique, a few choices have to be made prior to performing IC...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005775/ https://www.ncbi.nlm.nih.gov/pubmed/24788636 http://dx.doi.org/10.1371/journal.pone.0094943 |
_version_ | 1782314155402854400 |
---|---|
author | Majeed, Waqas Avison, Malcolm J. |
author_facet | Majeed, Waqas Avison, Malcolm J. |
author_sort | Majeed, Waqas |
collection | PubMed |
description | Independent component analysis (ICA) has been successfully utilized for analysis of functional MRI (fMRI) data for task related as well as resting state studies. Although it holds the promise of becoming an unbiased data-driven analysis technique, a few choices have to be made prior to performing ICA, selection of a method for determining the number of independent components (nIC) being one of them. Choice of nIC has been shown to influence the ICA maps, and various approaches (mostly relying on information theoretic criteria) have been proposed and implemented in commonly used ICA analysis packages, such as MELODIC and GIFT. However, there has been no consensus on the optimal method for nIC selection, and many studies utilize arbitrarily chosen values for nIC. Accurate and reliable determination of true nIC is especially important in the setting where the signals of interest contribute only a small fraction of the total variance, i.e. very low contrast-to-noise ratio (CNR), and/or very focal response. In this study, we evaluate the performance of different model order selection criteria and demonstrate that the model order selected based upon bootstrap stability of principal components yields more reliable and accurate estimates of model order. We then demonstrate the utility of this fully data-driven approach to detect weak and focal stimulus-driven responses in real data. Finally, we compare the performance of different multi-run ICA approaches using pseudo-real data. |
format | Online Article Text |
id | pubmed-4005775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40057752014-05-09 Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise Majeed, Waqas Avison, Malcolm J. PLoS One Research Article Independent component analysis (ICA) has been successfully utilized for analysis of functional MRI (fMRI) data for task related as well as resting state studies. Although it holds the promise of becoming an unbiased data-driven analysis technique, a few choices have to be made prior to performing ICA, selection of a method for determining the number of independent components (nIC) being one of them. Choice of nIC has been shown to influence the ICA maps, and various approaches (mostly relying on information theoretic criteria) have been proposed and implemented in commonly used ICA analysis packages, such as MELODIC and GIFT. However, there has been no consensus on the optimal method for nIC selection, and many studies utilize arbitrarily chosen values for nIC. Accurate and reliable determination of true nIC is especially important in the setting where the signals of interest contribute only a small fraction of the total variance, i.e. very low contrast-to-noise ratio (CNR), and/or very focal response. In this study, we evaluate the performance of different model order selection criteria and demonstrate that the model order selected based upon bootstrap stability of principal components yields more reliable and accurate estimates of model order. We then demonstrate the utility of this fully data-driven approach to detect weak and focal stimulus-driven responses in real data. Finally, we compare the performance of different multi-run ICA approaches using pseudo-real data. Public Library of Science 2014-04-30 /pmc/articles/PMC4005775/ /pubmed/24788636 http://dx.doi.org/10.1371/journal.pone.0094943 Text en © 2014 Majeed, Avison http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Majeed, Waqas Avison, Malcolm J. Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise |
title | Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise |
title_full | Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise |
title_fullStr | Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise |
title_full_unstemmed | Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise |
title_short | Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise |
title_sort | robust data driven model order estimation for independent component analysis of fmri data with low contrast to noise |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005775/ https://www.ncbi.nlm.nih.gov/pubmed/24788636 http://dx.doi.org/10.1371/journal.pone.0094943 |
work_keys_str_mv | AT majeedwaqas robustdatadrivenmodelorderestimationforindependentcomponentanalysisoffmridatawithlowcontrasttonoise AT avisonmalcolmj robustdatadrivenmodelorderestimationforindependentcomponentanalysisoffmridatawithlowcontrasttonoise |