Cargando…
De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087
BACKGROUND: 2-phenylethanl (2-PE) and its derivatives are important chemicals, which are widely used in food materials and fine chemical industries and polymers and it’s also a potentially valuable alcohol for next-generation biofuel. However, the biosynthesis of 2-PE are mainly biotransformed from...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005845/ https://www.ncbi.nlm.nih.gov/pubmed/24766677 http://dx.doi.org/10.1186/1472-6750-14-30 |
_version_ | 1782314162005737472 |
---|---|
author | Zhang, Haibo Cao, Mingle Jiang, Xinglin Zou, Huibin Wang, Cong Xu, Xin Xian, Mo |
author_facet | Zhang, Haibo Cao, Mingle Jiang, Xinglin Zou, Huibin Wang, Cong Xu, Xin Xian, Mo |
author_sort | Zhang, Haibo |
collection | PubMed |
description | BACKGROUND: 2-phenylethanl (2-PE) and its derivatives are important chemicals, which are widely used in food materials and fine chemical industries and polymers and it’s also a potentially valuable alcohol for next-generation biofuel. However, the biosynthesis of 2-PE are mainly biotransformed from phenylalanine, the price of which barred the production. Therefore, it is necessary to seek more sustainable technologies for 2-PE production. RESULTS: A new strain which produces 2-PE through the phenylpyruvate pathway was isolated and identified as Enterobacter sp. CGMCC 5087. The strain is able to use renewable monosaccharide as the carbon source and NH(4)Cl as the nitrogen source to produce 2-PE. Two genes of rate-limiting enzymes, chorismate mutase p-prephenate dehydratase (PheA) and 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase (DAHP), were cloned from Escherichia coli and overexpressed in E. sp. CGMCC 5087. The engineered E. sp. CGMCC 5087 produces 334.9 mg L(-1) 2-PE in 12 h, which is 3.26 times as high as the wild strain. CONCLUSIONS: The phenylpyruvate pathway and the substrate specificity of 2-keto-acid decarboxylase towards phenylpyruvate were found in E. sp. CGMCC 5087. Combined with the low-cost monosaccharide as the substrate, the finding provides a novel and potential way for 2-PE production. |
format | Online Article Text |
id | pubmed-4005845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40058452014-05-19 De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087 Zhang, Haibo Cao, Mingle Jiang, Xinglin Zou, Huibin Wang, Cong Xu, Xin Xian, Mo BMC Biotechnol Research Article BACKGROUND: 2-phenylethanl (2-PE) and its derivatives are important chemicals, which are widely used in food materials and fine chemical industries and polymers and it’s also a potentially valuable alcohol for next-generation biofuel. However, the biosynthesis of 2-PE are mainly biotransformed from phenylalanine, the price of which barred the production. Therefore, it is necessary to seek more sustainable technologies for 2-PE production. RESULTS: A new strain which produces 2-PE through the phenylpyruvate pathway was isolated and identified as Enterobacter sp. CGMCC 5087. The strain is able to use renewable monosaccharide as the carbon source and NH(4)Cl as the nitrogen source to produce 2-PE. Two genes of rate-limiting enzymes, chorismate mutase p-prephenate dehydratase (PheA) and 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase (DAHP), were cloned from Escherichia coli and overexpressed in E. sp. CGMCC 5087. The engineered E. sp. CGMCC 5087 produces 334.9 mg L(-1) 2-PE in 12 h, which is 3.26 times as high as the wild strain. CONCLUSIONS: The phenylpyruvate pathway and the substrate specificity of 2-keto-acid decarboxylase towards phenylpyruvate were found in E. sp. CGMCC 5087. Combined with the low-cost monosaccharide as the substrate, the finding provides a novel and potential way for 2-PE production. BioMed Central 2014-04-25 /pmc/articles/PMC4005845/ /pubmed/24766677 http://dx.doi.org/10.1186/1472-6750-14-30 Text en Copyright © 2014 Zhang et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
spellingShingle | Research Article Zhang, Haibo Cao, Mingle Jiang, Xinglin Zou, Huibin Wang, Cong Xu, Xin Xian, Mo De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087 |
title | De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087 |
title_full | De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087 |
title_fullStr | De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087 |
title_full_unstemmed | De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087 |
title_short | De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087 |
title_sort | de-novo synthesis of 2-phenylethanol by enterobacter sp. cgmcc 5087 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005845/ https://www.ncbi.nlm.nih.gov/pubmed/24766677 http://dx.doi.org/10.1186/1472-6750-14-30 |
work_keys_str_mv | AT zhanghaibo denovosynthesisof2phenylethanolbyenterobacterspcgmcc5087 AT caomingle denovosynthesisof2phenylethanolbyenterobacterspcgmcc5087 AT jiangxinglin denovosynthesisof2phenylethanolbyenterobacterspcgmcc5087 AT zouhuibin denovosynthesisof2phenylethanolbyenterobacterspcgmcc5087 AT wangcong denovosynthesisof2phenylethanolbyenterobacterspcgmcc5087 AT xuxin denovosynthesisof2phenylethanolbyenterobacterspcgmcc5087 AT xianmo denovosynthesisof2phenylethanolbyenterobacterspcgmcc5087 |