Cargando…

A probabilistic analysis reveals fundamental limitations with the environmental impact quotient and similar systems for rating pesticide risks

Comparing risks among pesticides has substantial utility for decision makers. However, if rating schemes to compare risks are to be used, they must be conceptually and mathematically sound. We address limitations with pesticide risk rating schemes by examining in particular the Environmental Impact...

Descripción completa

Detalles Bibliográficos
Autores principales: Peterson, Robert K.D., Schleier, Jerome J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006226/
https://www.ncbi.nlm.nih.gov/pubmed/24795854
http://dx.doi.org/10.7717/peerj.364
Descripción
Sumario:Comparing risks among pesticides has substantial utility for decision makers. However, if rating schemes to compare risks are to be used, they must be conceptually and mathematically sound. We address limitations with pesticide risk rating schemes by examining in particular the Environmental Impact Quotient (EIQ) using, for the first time, a probabilistic analytic technique. To demonstrate the consequences of mapping discrete risk ratings to probabilities, adjusted EIQs were calculated for a group of 20 insecticides in four chemical classes. Using Monte Carlo simulation, adjusted EIQs were determined under different hypothetical scenarios by incorporating probability ranges. The analysis revealed that pesticides that have different EIQs, and therefore different putative environmental effects, actually may be no different when incorporating uncertainty. The EIQ equation cannot take into account uncertainty the way that it is structured and provide reliable quotients of pesticide impact. The EIQ also is inconsistent with the accepted notion of risk as a joint probability of toxicity and exposure. Therefore, our results suggest that the EIQ and other similar schemes be discontinued in favor of conceptually sound schemes to estimate risk that rely on proper integration of toxicity and exposure information.