Cargando…
An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies
This article presents the ability of an omnibus permutation test on ensembles of two-locus analyses (2LOmb) to detect pure epistasis in the presence of genetic heterogeneity. The performance of 2LOmb is evaluated in various simulation scenarios covering two independent causes of complex disease wher...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006521/ https://www.ncbi.nlm.nih.gov/pubmed/24804170 http://dx.doi.org/10.1186/2193-1801-2-230 |
_version_ | 1782314225904910336 |
---|---|
author | Setsirichok, Damrongrit Tienboon, Phuwadej Jaroonruang, Nattapong Kittichaijaroen, Somkit Wongseree, Waranyu Piroonratana, Theera Usavanarong, Touchpong Limwongse, Chanin Aporntewan, Chatchawit Phadoongsidhi, Marong Chaiyaratana, Nachol |
author_facet | Setsirichok, Damrongrit Tienboon, Phuwadej Jaroonruang, Nattapong Kittichaijaroen, Somkit Wongseree, Waranyu Piroonratana, Theera Usavanarong, Touchpong Limwongse, Chanin Aporntewan, Chatchawit Phadoongsidhi, Marong Chaiyaratana, Nachol |
author_sort | Setsirichok, Damrongrit |
collection | PubMed |
description | This article presents the ability of an omnibus permutation test on ensembles of two-locus analyses (2LOmb) to detect pure epistasis in the presence of genetic heterogeneity. The performance of 2LOmb is evaluated in various simulation scenarios covering two independent causes of complex disease where each cause is governed by a purely epistatic interaction. Different scenarios are set up by varying the number of available single nucleotide polymorphisms (SNPs) in data, number of causative SNPs and ratio of case samples from two affected groups. The simulation results indicate that 2LOmb outperforms multifactor dimensionality reduction (MDR) and random forest (RF) techniques in terms of a low number of output SNPs and a high number of correctly-identified causative SNPs. Moreover, 2LOmb is capable of identifying the number of independent interactions in tractable computational time and can be used in genome-wide association studies. 2LOmb is subsequently applied to a type 1 diabetes mellitus (T1D) data set, which is collected from a UK population by the Wellcome Trust Case Control Consortium (WTCCC). After screening for SNPs that locate within or near genes and exhibit no marginal single-locus effects, the T1D data set is reduced to 95,991 SNPs from 12,146 genes. The 2LOmb search in the reduced T1D data set reveals that 12 SNPs, which can be divided into two independent sets, are associated with the disease. The first SNP set consists of three SNPs from MUC21 (mucin 21, cell surface associated), three SNPs from MUC22 (mucin 22), two SNPs from PSORS1C1 (psoriasis susceptibility 1 candidate 1) and one SNP from TCF19 (transcription factor 19). A four-locus interaction between these four genes is also detected. The second SNP set consists of three SNPs from ATAD1 (ATPase family, AAA domain containing 1). Overall, the findings indicate the detection of pure epistasis in the presence of genetic heterogeneity and provide an alternative explanation for the aetiology of T1D in the UK population. |
format | Online Article Text |
id | pubmed-4006521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-40065212014-05-06 An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies Setsirichok, Damrongrit Tienboon, Phuwadej Jaroonruang, Nattapong Kittichaijaroen, Somkit Wongseree, Waranyu Piroonratana, Theera Usavanarong, Touchpong Limwongse, Chanin Aporntewan, Chatchawit Phadoongsidhi, Marong Chaiyaratana, Nachol Springerplus Research This article presents the ability of an omnibus permutation test on ensembles of two-locus analyses (2LOmb) to detect pure epistasis in the presence of genetic heterogeneity. The performance of 2LOmb is evaluated in various simulation scenarios covering two independent causes of complex disease where each cause is governed by a purely epistatic interaction. Different scenarios are set up by varying the number of available single nucleotide polymorphisms (SNPs) in data, number of causative SNPs and ratio of case samples from two affected groups. The simulation results indicate that 2LOmb outperforms multifactor dimensionality reduction (MDR) and random forest (RF) techniques in terms of a low number of output SNPs and a high number of correctly-identified causative SNPs. Moreover, 2LOmb is capable of identifying the number of independent interactions in tractable computational time and can be used in genome-wide association studies. 2LOmb is subsequently applied to a type 1 diabetes mellitus (T1D) data set, which is collected from a UK population by the Wellcome Trust Case Control Consortium (WTCCC). After screening for SNPs that locate within or near genes and exhibit no marginal single-locus effects, the T1D data set is reduced to 95,991 SNPs from 12,146 genes. The 2LOmb search in the reduced T1D data set reveals that 12 SNPs, which can be divided into two independent sets, are associated with the disease. The first SNP set consists of three SNPs from MUC21 (mucin 21, cell surface associated), three SNPs from MUC22 (mucin 22), two SNPs from PSORS1C1 (psoriasis susceptibility 1 candidate 1) and one SNP from TCF19 (transcription factor 19). A four-locus interaction between these four genes is also detected. The second SNP set consists of three SNPs from ATAD1 (ATPase family, AAA domain containing 1). Overall, the findings indicate the detection of pure epistasis in the presence of genetic heterogeneity and provide an alternative explanation for the aetiology of T1D in the UK population. Springer 2013-05-19 /pmc/articles/PMC4006521/ /pubmed/24804170 http://dx.doi.org/10.1186/2193-1801-2-230 Text en Copyright © 2013 Setsirichok et al.; licensee Springer. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Setsirichok, Damrongrit Tienboon, Phuwadej Jaroonruang, Nattapong Kittichaijaroen, Somkit Wongseree, Waranyu Piroonratana, Theera Usavanarong, Touchpong Limwongse, Chanin Aporntewan, Chatchawit Phadoongsidhi, Marong Chaiyaratana, Nachol An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies |
title | An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies |
title_full | An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies |
title_fullStr | An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies |
title_full_unstemmed | An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies |
title_short | An omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies |
title_sort | omnibus permutation test on ensembles of two-locus analyses can detect pure epistasis and genetic heterogeneity in genome-wide association studies |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006521/ https://www.ncbi.nlm.nih.gov/pubmed/24804170 http://dx.doi.org/10.1186/2193-1801-2-230 |
work_keys_str_mv | AT setsirichokdamrongrit anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT tienboonphuwadej anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT jaroonruangnattapong anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT kittichaijaroensomkit anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT wongsereewaranyu anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT piroonratanatheera anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT usavanarongtouchpong anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT limwongsechanin anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT aporntewanchatchawit anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT phadoongsidhimarong anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT chaiyaratananachol anomnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT setsirichokdamrongrit omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT tienboonphuwadej omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT jaroonruangnattapong omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT kittichaijaroensomkit omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT wongsereewaranyu omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT piroonratanatheera omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT usavanarongtouchpong omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT limwongsechanin omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT aporntewanchatchawit omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT phadoongsidhimarong omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies AT chaiyaratananachol omnibuspermutationtestonensemblesoftwolocusanalysescandetectpureepistasisandgeneticheterogeneityingenomewideassociationstudies |