Cargando…
Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells
Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006810/ https://www.ncbi.nlm.nih.gov/pubmed/24788814 http://dx.doi.org/10.1371/journal.pone.0095986 |
_version_ | 1782314266753236992 |
---|---|
author | Deng, Nan Weaver, Jason M. Mosmann, Tim R. |
author_facet | Deng, Nan Weaver, Jason M. Mosmann, Tim R. |
author_sort | Deng, Nan |
collection | PubMed |
description | Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbet(lo) and Tbet(hi) cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbet(lo) cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression. |
format | Online Article Text |
id | pubmed-4006810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40068102014-05-09 Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells Deng, Nan Weaver, Jason M. Mosmann, Tim R. PLoS One Research Article Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbet(lo) and Tbet(hi) cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbet(lo) cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression. Public Library of Science 2014-05-01 /pmc/articles/PMC4006810/ /pubmed/24788814 http://dx.doi.org/10.1371/journal.pone.0095986 Text en © 2014 Deng et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Deng, Nan Weaver, Jason M. Mosmann, Tim R. Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells |
title | Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells |
title_full | Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells |
title_fullStr | Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells |
title_full_unstemmed | Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells |
title_short | Cytokine Diversity in the Th1-Dominated Human Anti-Influenza Response Caused by Variable Cytokine Expression by Th1 Cells, and a Minor Population of Uncommitted IL-2+IFNγ- Thpp Cells |
title_sort | cytokine diversity in the th1-dominated human anti-influenza response caused by variable cytokine expression by th1 cells, and a minor population of uncommitted il-2+ifnγ- thpp cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006810/ https://www.ncbi.nlm.nih.gov/pubmed/24788814 http://dx.doi.org/10.1371/journal.pone.0095986 |
work_keys_str_mv | AT dengnan cytokinediversityintheth1dominatedhumanantiinfluenzaresponsecausedbyvariablecytokineexpressionbyth1cellsandaminorpopulationofuncommittedil2ifngthppcells AT weaverjasonm cytokinediversityintheth1dominatedhumanantiinfluenzaresponsecausedbyvariablecytokineexpressionbyth1cellsandaminorpopulationofuncommittedil2ifngthppcells AT mosmanntimr cytokinediversityintheth1dominatedhumanantiinfluenzaresponsecausedbyvariablecytokineexpressionbyth1cellsandaminorpopulationofuncommittedil2ifngthppcells |