Cargando…
Meta-analysis and meta-modelling for diagnostic problems
BACKGROUND: A proportional hazards measure is suggested in the context of analyzing SROC curves that arise in the meta–analysis of diagnostic studies. The measure can be motivated as a special model: the Lehmann model for ROC curves. The Lehmann model involves study–specific sensitivities and specif...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007022/ https://www.ncbi.nlm.nih.gov/pubmed/24758534 http://dx.doi.org/10.1186/1471-2288-14-56 |
Sumario: | BACKGROUND: A proportional hazards measure is suggested in the context of analyzing SROC curves that arise in the meta–analysis of diagnostic studies. The measure can be motivated as a special model: the Lehmann model for ROC curves. The Lehmann model involves study–specific sensitivities and specificities and a diagnostic accuracy parameter which connects the two. METHODS: A study–specific model is estimated for each study, and the resulting study-specific estimate of diagnostic accuracy is taken as an outcome measure for a mixed model with a random study effect and other study-level covariates as fixed effects. The variance component model becomes estimable by deriving within-study variances, depending on the outcome measure of choice. In contrast to existing approaches – usually of bivariate nature for the outcome measures – the suggested approach is univariate and, hence, allows easily the application of conventional mixed modelling. RESULTS: Some simple modifications in the SAS procedure proc mixed allow the fitting of mixed models for meta-analytic data from diagnostic studies. The methodology is illustrated with several meta–analytic diagnostic data sets, including a meta–analysis of the Mini–Mental State Examination as a diagnostic device for dementia and mild cognitive impairment. CONCLUSIONS: The proposed methodology allows us to embed the meta-analysis of diagnostic studies into the well–developed area of mixed modelling. Different outcome measures, specifically from the perspective of whether a local or a global measure of diagnostic accuracy should be applied, are discussed as well. In particular, variation in cut-off value is discussed together with recommendations on choosing the best cut-off value. We also show how this problem can be addressed with the proposed methodology. |
---|