Cargando…
Enantioselective Construction of Remote Quaternary Stereocenters
Molecules containing all-carbon quaternary stereocenters – carbon atoms bonded to four distinct carbon substituents – are prevalent in Nature. However, the construction of such compounds in an enantioselective fashion remains a long-standing challenge to synthetic organic chemists. In particular, me...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007023/ https://www.ncbi.nlm.nih.gov/pubmed/24717439 http://dx.doi.org/10.1038/nature13231 |
Sumario: | Molecules containing all-carbon quaternary stereocenters – carbon atoms bonded to four distinct carbon substituents – are prevalent in Nature. However, the construction of such compounds in an enantioselective fashion remains a long-standing challenge to synthetic organic chemists. In particular, methods for forging quaternary stereocenters that are remote from other functional groups are underdeveloped. Herein we report a catalytic and enantioselective intermolecular Heck-type reaction of trisubstituted-alkenyl alcohols with aryl boronic acids. The reported method allows direct access to quaternary all-carbon-substituted β-, γ-, δ-, ε- or ζ aryl carbonyl compounds, as the unsaturation of the alkene is relayed to the alcohol resulting in the formation of a carbonyl group. The scope of the process also includes incorporation of pre-existing stereocenters along the alkyl chain, which links the alkene and the alcohol, wherein the stereocenter is preserved. The described method is flexible, allowing access to diverse building blocks containing an enantiomerically enriched, quaternary center. |
---|