Cargando…
Feature weight estimation for gene selection: a local hyperlinear learning approach
BACKGROUND: Modeling high-dimensional data involving thousands of variables is particularly important for gene expression profiling experiments, nevertheless,it remains a challenging task. One of the challenges is to implement an effective method for selecting a small set of relevant genes, buried i...
Autores principales: | Cai, Hongmin, Ruan, Peiying, Ng, Michael, Akutsu, Tatsuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007530/ https://www.ncbi.nlm.nih.gov/pubmed/24625071 http://dx.doi.org/10.1186/1471-2105-15-70 |
Ejemplares similares
-
Introduction to sofic and hyperlinear groups and Connes' embedding conjecture
por: Capraro, Valerio, et al.
Publicado: (2015) -
Optimal combination of feature selection and classification via local hyperplane based learning strategy
por: Cheng, Xiaoping, et al.
Publicado: (2015) -
Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions
por: Ruan, Peiying, et al.
Publicado: (2013) -
Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features
por: Demir-Kavuk, Ozgur, et al.
Publicado: (2011) -
Optimizing amino acid substitution matrices with a local alignment kernel
por: Saigo, Hiroto, et al.
Publicado: (2006)