Cargando…

Time course-changes in phosphatidylcholine profile during oxidative modification of low-density lipoprotein

BACKGROUND: Oxidized phosphatidylcholines (oxPC) and lysophosphatidylcholine (lysoPC) generated during the formation of oxidized low-density lipoprotein (oxLDL) are involved in atherosclerotic lesion development. We investigated the time course-changes in phosphatidylcholine (PC) molecular species d...

Descripción completa

Detalles Bibliográficos
Autores principales: Sasabe, Naoko, Keyamura, Yuka, Obama, Takashi, Inoue, Nozomi, Masuko, Yukihiro, Igarashi, Yu, Aiuchi, Toshihiro, Kato, Rina, Yamaguchi, Tomohiro, Kuwata, Hiroshi, Iwamoto, Sanju, Miyazaki, Akira, Hara, Shuntaro, Yoshikawa, Tomohiro, Itabe, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007754/
https://www.ncbi.nlm.nih.gov/pubmed/24625108
http://dx.doi.org/10.1186/1476-511X-13-48
Descripción
Sumario:BACKGROUND: Oxidized phosphatidylcholines (oxPC) and lysophosphatidylcholine (lysoPC) generated during the formation of oxidized low-density lipoprotein (oxLDL) are involved in atherosclerotic lesion development. We investigated the time course-changes in phosphatidylcholine (PC) molecular species during oxidation of LDL to determine how those atherogenic PCs are produced. METHODS: Human and rabbit LDLs were pretreated with or without a selective platelet-activating factor acetylhydrolase (PAF-AH) inhibitor. LDL was oxidized by incubation with copper sulfate, and PC profiles were analyzed by liquid chromatography-tandem mass spectrometry. RESULTS: When human LDL was oxidized, the peak areas for polyunsaturated fatty acid (PUFA)-containing PC species dramatically decreased after a short lag period, concomitantly lysoPC species increased sharply. Although a variety of oxPC species containing oxidized fatty acyl groups or cleaved acyl chains are formed during LDL oxidation, only a few oxPC products accumulated in oxLDL: 1-palmitoyl-2-(9-oxo-nonanoyl) PC and long-chain oxPC with two double bonds. Pretreatment of LDL with the PAF-AH inhibitor greatly reduced lysoPC production while it had no effect on lipid peroxidation reactions and oxPC profiles. Rabbit LDL, which has a different composition of PC molecular species and needs a longer time to reach achieve full oxidation than human LDL, also accumulated lysoPC during oxidation. The increase in lysoPC in rabbit oxLDL was suppressed by pretreatment with the PAF-AH inhibitor. The major oxPC species formed in rabbit oxLDL were almost the same as human oxLDL. CONCLUSIONS: These results suggest that lysoPC species are the major products and PAF-AH activity is crucial for lysoPC generation during oxidation of LDL. The oxPC species accumulated are limited when LDL is oxidized with copper ion in vitro.