Cargando…
Function-based Identification of Mammalian Enhancers Using Site-Specific Integration
The accurate and comprehensive identification of functional regulatory sequences in mammalian genomes remains a major challenge. Here we describe Site-specific Integration FACS-sequencing (SIF-seq), an unbiased, medium-throughput functional assay for the discovery of distant-acting enhancers. Plurip...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008384/ https://www.ncbi.nlm.nih.gov/pubmed/24658141 http://dx.doi.org/10.1038/nmeth.2886 |
Sumario: | The accurate and comprehensive identification of functional regulatory sequences in mammalian genomes remains a major challenge. Here we describe Site-specific Integration FACS-sequencing (SIF-seq), an unbiased, medium-throughput functional assay for the discovery of distant-acting enhancers. Pluripotent cell reporter assays, targeted single-copy genomic integration, and flow cytometry are coupled with high-throughput DNA sequencing to enable parallel screening of large numbers of DNA sequences. We demonstrate the utility of this method by functionally interrogating >500 kb of mouse and human sequence for enhancer activity and identifying embryonic stem (ES) cell enhancers at pluripotency loci including NANOG. We also demonstrate the effectiveness of the approach in differentiated cell populations through the identification of cardiac enhancers from cardiomyocytes and neuronal enhancers from neural progenitors. SIF-seq is a powerful and flexible method for the de novo functional identification of mammalian enhancers in a potentially wide variety of cell types. |
---|