Cargando…
A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control
Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local fie...
Autores principales: | Li, Lin, Brockmeier, Austin J., Choi, John S., Francis, Joseph T., Sanchez, Justin C., Príncipe, José C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009155/ https://www.ncbi.nlm.nih.gov/pubmed/24829569 http://dx.doi.org/10.1155/2014/870160 |
Ejemplares similares
-
Kernel Temporal Differences for Neural Decoding
por: Bae, Jihye, et al.
Publicado: (2015) -
Analysis of Deep Convolutional Neural Networks Using Tensor Kernels and Matrix-Based Entropy
por: Wickstrøm, Kristoffer K., et al.
Publicado: (2023) -
A Frobenius Norm Regularization Method for Convolutional Kernel Tensors in Neural Networks
por: Guo, Pei-Chang
Publicado: (2022) -
A parameter-optimization framework for neural decoding systems
por: Xie, Jing, et al.
Publicado: (2023) -
Positive definite Kernels, continuous tensor products, and central limit theorems of probability theory
por: Parthasarathy, K R, et al.
Publicado: (1972)