Cargando…
A CT Reconstruction Algorithm Based on L(1/2) Regularization
Computed tomography (CT) reconstruction with low radiation dose is a significant research point in current medical CT field. Compressed sensing has shown great potential reconstruct high-quality CT images from few-view or sparse-view data. In this paper, we use the sparser L(1/2) regularization oper...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009238/ https://www.ncbi.nlm.nih.gov/pubmed/24834109 http://dx.doi.org/10.1155/2014/862910 |
Sumario: | Computed tomography (CT) reconstruction with low radiation dose is a significant research point in current medical CT field. Compressed sensing has shown great potential reconstruct high-quality CT images from few-view or sparse-view data. In this paper, we use the sparser L(1/2) regularization operator to replace the traditional L(1) regularization and combine the Split Bregman method to reconstruct CT images, which has good unbiasedness and can accelerate iterative convergence. In the reconstruction experiments with simulation and real projection data, we analyze the quality of reconstructed images using different reconstruction methods in different projection angles and iteration numbers. Compared with algebraic reconstruction technique (ART) and total variance (TV) based approaches, the proposed reconstruction algorithm can not only get better images with higher quality from few-view data but also need less iteration numbers. |
---|