Cargando…
A CT Reconstruction Algorithm Based on L(1/2) Regularization
Computed tomography (CT) reconstruction with low radiation dose is a significant research point in current medical CT field. Compressed sensing has shown great potential reconstruct high-quality CT images from few-view or sparse-view data. In this paper, we use the sparser L(1/2) regularization oper...
Autores principales: | Chen, Mianyi, Mi, Deling, He, Peng, Deng, Luzhen, Wei, Biao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009238/ https://www.ncbi.nlm.nih.gov/pubmed/24834109 http://dx.doi.org/10.1155/2014/862910 |
Ejemplares similares
-
An Improved Total Variation Minimization Method Using Prior Images and Split-Bregman Method in CT Reconstruction
por: Deng, Luzhen, et al.
Publicado: (2016) -
Material Discrimination Based on K-edge Characteristics
por: He, Peng, et al.
Publicado: (2013) -
Monte Carlo Simulation for Polychromatic X-Ray Fluorescence Computed Tomography with Sheet-Beam Geometry
por: Jiang, Shanghai, et al.
Publicado: (2017) -
An Algorithm of l(1)-Norm and l(0)-Norm Regularization Algorithm for CT Image Reconstruction from Limited Projection
por: Li, Xiezhang, et al.
Publicado: (2020) -
A CT Reconstruction Algorithm Based on Non-Aliasing Contourlet Transform and Compressive Sensing
por: Deng, Lu-zhen, et al.
Publicado: (2014)