Cargando…
Portraying the Expression Landscapes of B-Cell Lymphoma-Intuitive Detection of Outlier Samples and of Molecular Subtypes
We present an analytic framework based on Self-Organizing Map (SOM) machine learning to study large scale patient data sets. The potency of the approach is demonstrated in a case study using gene expression data of more than 200 mature aggressive B-cell lymphoma patients. The method portrays each sa...
Autores principales: | Hopp, Lydia, Lembcke, Kathrin, Binder, Hans, Wirth, Henry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009791/ https://www.ncbi.nlm.nih.gov/pubmed/24833231 http://dx.doi.org/10.3390/biology2041411 |
Ejemplares similares
-
Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States
por: Hopp, Lydia, et al.
Publicado: (2015) -
SOMmelier—Intuitive Visualization of the Topology of Grapevine Genome Landscapes Using Artificial Neural Networks
por: Nikoghosyan, Maria, et al.
Publicado: (2020) -
Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers
por: Hopp, Lydia, et al.
Publicado: (2015) -
Molecular Subtyping and Outlier Detection in Human Disease Using the Paraclique Algorithm
por: Hagan, Ronald D., et al.
Publicado: (2021) -
Transcriptional states of CAR-T infusion relate to neurotoxicity – lessons from high-resolution single-cell SOM expression portraying
por: Loeffler-Wirth, Henry, et al.
Publicado: (2022)