Cargando…
Algorithms for Hidden Markov Models Restricted to Occurrences of Regular Expressions
Hidden Markov Models (HMMs) are widely used probabilistic models, particularly for annotating sequential data with an underlying hidden structure. Patterns in the annotation are often more relevant to study than the hidden structure itself. A typical HMM analysis consists of annotating the observed...
Autores principales: | Tataru, Paula, Sand, Andreas, Hobolth, Asger, Mailund, Thomas, Pedersen, Christian N. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009796/ https://www.ncbi.nlm.nih.gov/pubmed/24833225 http://dx.doi.org/10.3390/biology2041282 |
Ejemplares similares
-
Genomic Relationships and Speciation Times of Human, Chimpanzee, and Gorilla Inferred from a Coalescent Hidden Markov Model
por: Hobolth, Asger, et al.
Publicado: (2007) -
Comparison of methods for calculating conditional expectations of sufficient statistics for continuous time Markov chains
por: Tataru, Paula, et al.
Publicado: (2011) -
Estimating Divergence Time and Ancestral Effective Population Size of Bornean and Sumatran Orangutan Subspecies Using a Coalescent Hidden Markov Model
por: Mailund, Thomas, et al.
Publicado: (2011) -
Statistical Inference in the Wright–Fisher Model Using Allele Frequency Data
por: Tataru, Paula, et al.
Publicado: (2017) -
Regmex: a statistical tool for exploring motifs in ranked sequence lists from genomics experiments
por: Nielsen, Morten Muhlig, et al.
Publicado: (2018)