Cargando…

Characterization of Unstable Products of Flavin- and Pterin-Dependent Enzymes by Continuous-Flow Mass Spectrometry

[Image: see text] Continuous-flow mass spectrometry (CFMS) was used to monitor the products formed during the initial 0.25–20 s of the reactions catalyzed by the flavoprotein N-acetylpolyamine oxidase (PAO) and the pterin-dependent enzymes phenylalanine hydroxylase (PheH) and tyrosine hydroxylase (T...

Descripción completa

Detalles Bibliográficos
Autores principales: Roberts, Kenneth M., Tormos, José R., Fitzpatrick, Paul F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010283/
https://www.ncbi.nlm.nih.gov/pubmed/24713088
http://dx.doi.org/10.1021/bi500267c
Descripción
Sumario:[Image: see text] Continuous-flow mass spectrometry (CFMS) was used to monitor the products formed during the initial 0.25–20 s of the reactions catalyzed by the flavoprotein N-acetylpolyamine oxidase (PAO) and the pterin-dependent enzymes phenylalanine hydroxylase (PheH) and tyrosine hydroxylase (TyrH). N,N′-Dibenzyl-1,4-diaminobutane (DBDB) is a substrate for PAO for which amine oxidation is rate-limiting. CFMS of the reaction showed formation of an initial imine due to oxidation of an exo-carbon–nitrogen bond. Nonenzymatic hydrolysis of the imine formed benzaldehyde and N-benzyl-1,4-diaminobutane; the subsequent oxidation by PAO of the latter to an additional imine could also be followed. Measurement of the deuterium kinetic isotope effect on DBDB oxidation by CFMS yielded a value of 7.6 ± 0.3, in good agreement with a value of 6.7 ± 0.6 from steady-state kinetic analyses. In the PheH reaction, the transient formation of the 4a-hydroxypterin product was readily detected; tandem mass spectrometry confirmed attachment of the oxygen to C(4a). With wild-type TyrH, the 4a-hydroxypterin was also the product. In contrast, no product other than a dihydropterin could be detected in the reaction of the mutant protein E332A TyrH.