Cargando…
Characterization of Complex, Co-Adapted Skeletal Biomechanics Phenotypes: A Needed Paradigm Shift in the Genetics of Bone Structure and Function
The genetic architecture of skeletal biomechanical performance has tremendous potential to advance our knowledge of the biological mechanisms that drive variation in skeletal fragility and osteoporosis risk. Research using traditional approaches that focus on specific gene pathways is increasing our...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010686/ https://www.ncbi.nlm.nih.gov/pubmed/24756406 http://dx.doi.org/10.1007/s11914-014-0211-6 |
_version_ | 1782479890412470272 |
---|---|
author | Havill, L. M. Coan, H. B. Mahaney, M. C. Nicolella, D. P. |
author_facet | Havill, L. M. Coan, H. B. Mahaney, M. C. Nicolella, D. P. |
author_sort | Havill, L. M. |
collection | PubMed |
description | The genetic architecture of skeletal biomechanical performance has tremendous potential to advance our knowledge of the biological mechanisms that drive variation in skeletal fragility and osteoporosis risk. Research using traditional approaches that focus on specific gene pathways is increasing our understanding of how and to what degree those pathways may affect population-level variation in fracture susceptibility, and shows that known pathways may affect bone fragility through unsuspected mechanisms. Non-traditional approaches that incorporate a new appreciation for the degree to which bone traits co-adapt to functional loading environments, using a wide variety of redundant compensatory mechanisms to meet both physiological and mechanical demands, represent a radical departure from the dominant reductionist paradigm and have the potential to rapidly advance our understanding of bone fragility and identification of new targets for therapeutic intervention. |
format | Online Article Text |
id | pubmed-4010686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-40106862014-05-07 Characterization of Complex, Co-Adapted Skeletal Biomechanics Phenotypes: A Needed Paradigm Shift in the Genetics of Bone Structure and Function Havill, L. M. Coan, H. B. Mahaney, M. C. Nicolella, D. P. Curr Osteoporos Rep Biomechanics (M Silva and P Zysset, Section Editors) The genetic architecture of skeletal biomechanical performance has tremendous potential to advance our knowledge of the biological mechanisms that drive variation in skeletal fragility and osteoporosis risk. Research using traditional approaches that focus on specific gene pathways is increasing our understanding of how and to what degree those pathways may affect population-level variation in fracture susceptibility, and shows that known pathways may affect bone fragility through unsuspected mechanisms. Non-traditional approaches that incorporate a new appreciation for the degree to which bone traits co-adapt to functional loading environments, using a wide variety of redundant compensatory mechanisms to meet both physiological and mechanical demands, represent a radical departure from the dominant reductionist paradigm and have the potential to rapidly advance our understanding of bone fragility and identification of new targets for therapeutic intervention. Springer US 2014-04-23 2014 /pmc/articles/PMC4010686/ /pubmed/24756406 http://dx.doi.org/10.1007/s11914-014-0211-6 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Biomechanics (M Silva and P Zysset, Section Editors) Havill, L. M. Coan, H. B. Mahaney, M. C. Nicolella, D. P. Characterization of Complex, Co-Adapted Skeletal Biomechanics Phenotypes: A Needed Paradigm Shift in the Genetics of Bone Structure and Function |
title | Characterization of Complex, Co-Adapted Skeletal Biomechanics Phenotypes: A Needed Paradigm Shift in the Genetics of Bone Structure and Function |
title_full | Characterization of Complex, Co-Adapted Skeletal Biomechanics Phenotypes: A Needed Paradigm Shift in the Genetics of Bone Structure and Function |
title_fullStr | Characterization of Complex, Co-Adapted Skeletal Biomechanics Phenotypes: A Needed Paradigm Shift in the Genetics of Bone Structure and Function |
title_full_unstemmed | Characterization of Complex, Co-Adapted Skeletal Biomechanics Phenotypes: A Needed Paradigm Shift in the Genetics of Bone Structure and Function |
title_short | Characterization of Complex, Co-Adapted Skeletal Biomechanics Phenotypes: A Needed Paradigm Shift in the Genetics of Bone Structure and Function |
title_sort | characterization of complex, co-adapted skeletal biomechanics phenotypes: a needed paradigm shift in the genetics of bone structure and function |
topic | Biomechanics (M Silva and P Zysset, Section Editors) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010686/ https://www.ncbi.nlm.nih.gov/pubmed/24756406 http://dx.doi.org/10.1007/s11914-014-0211-6 |
work_keys_str_mv | AT havilllm characterizationofcomplexcoadaptedskeletalbiomechanicsphenotypesaneededparadigmshiftinthegeneticsofbonestructureandfunction AT coanhb characterizationofcomplexcoadaptedskeletalbiomechanicsphenotypesaneededparadigmshiftinthegeneticsofbonestructureandfunction AT mahaneymc characterizationofcomplexcoadaptedskeletalbiomechanicsphenotypesaneededparadigmshiftinthegeneticsofbonestructureandfunction AT nicolelladp characterizationofcomplexcoadaptedskeletalbiomechanicsphenotypesaneededparadigmshiftinthegeneticsofbonestructureandfunction |