Cargando…

Preliminary Investigation of an SOI-based Arrayed Waveguide Grating Demodulation Integration Microsystem

An arrayed waveguide grating (AWG) demodulation integration microsystem is investigated in this study. The system consists of a C-band on-chip LED, a 2 × 2 silicon nanowire-based coupler, a fiber Bragg grating (FBG) array, a 1 × 8 AWG, and a photoelectric detector array. The coupler and AWG are made...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hongqiang, Zhou, Wenqian, Liu, Yu, Dong, Xiaye, Zhang, Cheng, Miao, Changyun, Zhang, Meiling, Li, Enbang, Tang, Chunxiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010923/
https://www.ncbi.nlm.nih.gov/pubmed/24797561
http://dx.doi.org/10.1038/srep04848
Descripción
Sumario:An arrayed waveguide grating (AWG) demodulation integration microsystem is investigated in this study. The system consists of a C-band on-chip LED, a 2 × 2 silicon nanowire-based coupler, a fiber Bragg grating (FBG) array, a 1 × 8 AWG, and a photoelectric detector array. The coupler and AWG are made from silicon-on-insulator wafers using electron beam exposure and response-coupled plasma technology. Experimental results show that the excess loss in the MMI coupler with a footprint of 6 × 100 μm(2) is 0.5423 dB. The 1 × 8 AWG with a footprint of 267 × 381 μm(2) and a waveguide width of 0.4 μm exhibits a central channel loss of −3.18 dB, insertion loss non-uniformity of −1.34 dB, and crosstalk level of −23.1 dB. The entire system is preliminarily tested. Wavelength measurement precision is observed to reach 0.001 nm. The wavelength sensitivity of each FBG is between 0.04 and 0.06 nm/dB.