Cargando…
Bayesian multi-task learning for decoding multi-subject neuroimaging data
Decoding models based on pattern recognition (PR) are becoming increasingly important tools for neuroimaging data analysis. In contrast to alternative (mass-univariate) encoding approaches that use hierarchical models to capture inter-subject variability, inter-subject differences are not typically...
Autores principales: | Marquand, Andre F., Brammer, Michael, Williams, Steven C.R., Doyle, Orla M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010954/ https://www.ncbi.nlm.nih.gov/pubmed/24531053 http://dx.doi.org/10.1016/j.neuroimage.2014.02.008 |
Ejemplares similares
-
Modeling longitudinal imaging biomarkers with parametric Bayesian multi‐task learning
por: Aksman, Leon M., et al.
Publicado: (2019) -
Accommodating Site Variation In Neuroimaging Data Using Normative And Hierarchical Bayesian Models
por: Bayer, Johanna M. M., et al.
Publicado: (2022) -
A Bayesian spatial model for neuroimaging data based on biologically informed basis functions
por: Huertas, Ismael, et al.
Publicado: (2017) -
A multi-subject, multi-modal human neuroimaging dataset
por: Wakeman, Daniel G, et al.
Publicado: (2015) -
Multi-population genomic prediction using a multi-task Bayesian learning model
por: Chen, Liuhong, et al.
Publicado: (2014)