Cargando…
Genetic Fuzzy System Predicting Contractile Reactivity Patterns of Small Arteries
Monitoring of physiological surrogate end points in drug development generates dynamic time-domain data reflecting the state of the biological system. Conventional data analysis often reduces the information in these data by extracting specific data points, thereby discarding potentially useful info...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011165/ https://www.ncbi.nlm.nih.gov/pubmed/24695357 http://dx.doi.org/10.1038/psp.2014.3 |
_version_ | 1782314767323496448 |
---|---|
author | Tang, J Sheykhzade, M Clausen, B F Boonen, H C M |
author_facet | Tang, J Sheykhzade, M Clausen, B F Boonen, H C M |
author_sort | Tang, J |
collection | PubMed |
description | Monitoring of physiological surrogate end points in drug development generates dynamic time-domain data reflecting the state of the biological system. Conventional data analysis often reduces the information in these data by extracting specific data points, thereby discarding potentially useful information. We developed a genetic fuzzy system (GFS) algorithm that is capable of learning all information in time-domain physiological data. Data on isometric force development of isolated small arteries were used as a framework for developing and optimizing a GFS. GFS performance was improved by several strategies. Results show that optimized fuzzy systems (OFSs) predict contractile reactivity of arteries accurately. In addition, OFSs identified significant differences that were undetectable using conventional analysis in the responses of arteries between groups. We concluded that OFSs may be used in clustering or classification tasks as aids in the objective identification or prediction of dynamic physiological behavior. |
format | Online Article Text |
id | pubmed-4011165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-40111652014-05-13 Genetic Fuzzy System Predicting Contractile Reactivity Patterns of Small Arteries Tang, J Sheykhzade, M Clausen, B F Boonen, H C M CPT Pharmacometrics Syst Pharmacol Original Article Monitoring of physiological surrogate end points in drug development generates dynamic time-domain data reflecting the state of the biological system. Conventional data analysis often reduces the information in these data by extracting specific data points, thereby discarding potentially useful information. We developed a genetic fuzzy system (GFS) algorithm that is capable of learning all information in time-domain physiological data. Data on isometric force development of isolated small arteries were used as a framework for developing and optimizing a GFS. GFS performance was improved by several strategies. Results show that optimized fuzzy systems (OFSs) predict contractile reactivity of arteries accurately. In addition, OFSs identified significant differences that were undetectable using conventional analysis in the responses of arteries between groups. We concluded that OFSs may be used in clustering or classification tasks as aids in the objective identification or prediction of dynamic physiological behavior. Nature Publishing Group 2014-04 2014-04-02 /pmc/articles/PMC4011165/ /pubmed/24695357 http://dx.doi.org/10.1038/psp.2014.3 Text en Copyright © 2014 American Society for Clinical Pharmacology and Therapeutics http://creativecommons.org/licenses/by-nc-nd/3.0/ CPT: Pharmacometrics and Systems Pharmacology is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Original Article Tang, J Sheykhzade, M Clausen, B F Boonen, H C M Genetic Fuzzy System Predicting Contractile Reactivity Patterns of Small Arteries |
title | Genetic Fuzzy System Predicting Contractile Reactivity Patterns of Small Arteries |
title_full | Genetic Fuzzy System Predicting Contractile Reactivity Patterns of Small Arteries |
title_fullStr | Genetic Fuzzy System Predicting Contractile Reactivity Patterns of Small Arteries |
title_full_unstemmed | Genetic Fuzzy System Predicting Contractile Reactivity Patterns of Small Arteries |
title_short | Genetic Fuzzy System Predicting Contractile Reactivity Patterns of Small Arteries |
title_sort | genetic fuzzy system predicting contractile reactivity patterns of small arteries |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011165/ https://www.ncbi.nlm.nih.gov/pubmed/24695357 http://dx.doi.org/10.1038/psp.2014.3 |
work_keys_str_mv | AT tangj geneticfuzzysystempredictingcontractilereactivitypatternsofsmallarteries AT sheykhzadem geneticfuzzysystempredictingcontractilereactivitypatternsofsmallarteries AT clausenbf geneticfuzzysystempredictingcontractilereactivitypatternsofsmallarteries AT boonenhcm geneticfuzzysystempredictingcontractilereactivitypatternsofsmallarteries |